Cho \(a,b,c\) \(\in\) \(Z\) biết: \(ab-ac+bc-c^2=-1\). Tính tổng: \(a+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: (ab - ac)+ (bc - cc) = -1
=> a. (b - c)+ c. (b - c)= -1
=> (b - c). (a + c)= -1
=> b-c và a+c thuộc Ư(-1)={-1;1}
Vậy b-c=1 và a+c=-1 hoặc a+c=1 và b-c=-1
ta thấy b-c và a+c luôn luôn đối nhau
ta sẽ có: a+c=-(b-c)
=>a+c=-b+c
=>a = -b
Vậy a và b đối nhau nên sẽ có tổng là 0
Cảm ơn bạn Ma Ca Row đã giúp mình làm bài này. Mình cũng đã gặp rắc rối khi giải bài này. Cảm ơn bạn.
Thân ái,
Cao Thành Long
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ab-ac+bc-c2
= a(b-c) +c(b-c)
=(a+c)(b-c)=-1
=> a+c = -(b-c)
=> a+c = -b+c
=> a=-b => là 2 số đối nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Giải:
Ta có:
\(ab-ac+bc-c^2=-1\)
\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)
\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)
Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)
Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau
\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)
Suy ra \(b=-a\) tức \(a\) và \(b\) là hai số đối nhau
Vậy \(a\) và \(b\) là hai số đối nhau (Đpcm)
b) Giải:
Ta có:
Từ \(a+b=c+d\Rightarrow d=a+b-c\)
Vì \(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)
\(\Rightarrow ab-c\left(a+b-c\right)=1\)
\(\Rightarrow ab-ac-bc+c^2=1\)
\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)
\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)
Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))
Hay \(a=b\) (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
\(=\frac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}+\frac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(+\frac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=0\)
ab-ac+bc-c^2=-1
<=>a(b-c)+c(b-c)=-1
<=>(b-c)(a+c)=-1
Do đó trong 3 thừa số (b-c) và (a+c) phải có 1 thừa số bằng 1,thừa số kia bằng -1 tức chúng đối nhau
Vậy b-c=-(a+c)<=>b-c=-a-c
<=>b=-a=> a và b đối nhau=>a+b=0