Diện tích hình phẳng giới hạn bởi các đường y = x 4 , y = - x 2 và x = 1 là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm của hai đường cong là
x 2 + x - 1 = x 4 + x - 1 ⇔ x 2 - x 4 = 0 ⇔ x ∈ 0 ; 1 ; - 1
Khi đó diện tích cần tìm là
S = ∫ - 1 1 x 2 - x 4 d x = ∫ - 1 0 x 2 - x 4 d x + ∫ 0 1 x 2 - x 4 d x = x 3 3 - x 5 5 - 1 0 + x 3 3 - x 5 5 0 1 = 4 15
Đáp án A

Chọn D.
Phương trình hoành độ giao điểm của đồ thị hàm số y = x2 + x - 1 và y = x4 + x - 1 là :

Chọn B.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = x3 + 3x và y = -x là: x3 + 4x = 0 ⇔ x = 0
Ta có: x3 + 4x ≤ 0, ∀ x ∈ [-2;0].
Do đó:

Chọn A.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = ex và trục y = 1 là: ex = 1 ⇔ x = 0
Do đó:
Đáp án A