Cho x, y là các số thực thỏa mãn . Giá trị nhỏ nhất của biểu thức bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

và đi đến kết quả
y
=
1
+
x

Đáp án A
Sử dụng BĐT buhinhacopski ta có
x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .
Tức là ta có x + y + 1 2 ≤ 4 2 x + y + 2 . Đặt t = x + y . Chú ý rằng t ≥ − 1 .
Ta có
t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.
Vậy max t = 7 xảy ra khi x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .

Từ giả thiết \(x^2+y^2=1\Rightarrow y^2\le1\Rightarrow-1\le y\le1\Rightarrow y^3\le y^2\)
\(P=2x+y^3\le2x+y^2=2x+1-x^2=2-\left(x-1\right)^2\le2\)
Dấu "=" khi \(\hept{\begin{cases}x-1=0\\x^2+y^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)