Xét dấu của tam thức bậc hai sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Biểu thức \(f\left( x \right) = 2{x^2} + x - 1\) là một tam thức bậc hai
\(f\left( 1 \right) = {2.1^2} + 1 - 1 = 2 > 0\) nên \(f\left( x \right)\) dương tại \(x = 1\)
b) Biểu thức \(g\left( x \right) = - {x^4} + 2{x^2} + 1\) không phải là một tam thức bậc hai
c) Biểu thức \(h\left( x \right) = - {x^2} + \sqrt 2 .x - 3\) là một tam thức bậc hai
\(h\left( 1 \right) = - {1^2} + \sqrt 2 .1 - 3 = \sqrt 2 - 4 < 0\) nên \(h\left( x \right)\) âm tại \(x = 1\)

Tam thức 3 x 2 + x + 5 có biệt thức Δ = -59 < 0 và hệ số a = 3 > 0
Vậy 3 x 2 + x + 5 > 0, ∀x

a) Ta có \(a = - 2 < 0\), \(b = 4 = > b' = 2\) và \(c = - 5\)
\(\Delta ' = {2^2} - \left( { - 2} \right).\left( { - 5} \right) = - 6 < 0\)
=>\(f\left( x \right)\) cùng dấu âm với hệ số a.
=> \(f\left( x \right) < 0\forall x \in \mathbb{R}\)
b) Ta có: \(a = - 1,b = 6,c = - 9 = > b' = 3\)
\(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)
\(\frac{{ - b}}{{2a}} = \frac{{ - b'}}{a} = 3\)
=> \(f\left( x \right)\) cùng dấu âm với hệ số a với mọi \(x \in \mathbb{R}\backslash \left\{ 3 \right\}\)
=> \(f\left( x \right) < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

Tham khảo:
Tam thức bậc hai \(f\left( x \right) = - {x^2} - 2x + 8\) có hai nghiệm phân biệt \({x_1} = - 4,{x_2} = 2\) và hệ số \(a = - 1 < 0\).
Ta có bảng xét dấu \(f\left( x \right)\) như sau:

a) Ta thấy đồ thị nằm trên trục hoành nên \(f\left( x \right) = {x^2} - 2x + 2 > 0\).
b) Ta thấy đồ thị nằm dưới trục hoành nên \(f\left( x \right) = - {x^2} + 4x - 5 < 0\).
c) Ta thấy \(f\left( x \right) = {x^2} - 2x + 2\) có hệ số a=1>0 và \(f\left( x \right) = {x^2} - 2x + 2 > 0\)
\(f\left( x \right) = - {x^2} + 4x - 5\) có hệ số a=-1
Như thế, khi \(\Delta < 0\) thì tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) cùng dấu với hệ số a.

a) \(f\left( x \right) = 2{x^2} - 3x - 2\) có \(\Delta = 25 > 0\), hai nghiệm phân biệt là \({x_1} = - \frac{1}{2};{x_2} = 2\)
và \(a = 2 > 0\)
Ta có bảng xét dấu như sau:
Vậy \(f\left( x \right)\) âm trong khoảng \(\left( { - \frac{1}{2},2} \right)\) và dương trong hai khoảng
\(\left( { - \infty , - \frac{1}{2}} \right)\) và \(\left( {2, + \infty } \right)\)
b) \(g\left( x \right) = - {x^2} + 2x - 3\) có \(\Delta = {2^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 8 < 0\) và \(a = - 1 < 0\)
Vậy \(g\left( x \right)\)âm với mọi \(x \in \mathbb{R}\)

Tham khảo:
a) Ta có tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\) có 2 nghiệm phân biệt \({x_1} = - 1,{x_2} = 2\) và hệ số \(a = 1 > 0\)
Ta có bảng xét dấu f(x) như sau:
Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)b) Từ bảng xét dấu ta thấy \(f\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x < - 1\\x > 2\end{array} \right.\)

b: \(\Delta=2^2-4\cdot1\cdot1=0\)
Do đó: Tam thức này dương khi x khác -1; bằng 0 khi x=-1
a: \(\Delta=3^2-4\cdot\left(-5\right)\cdot\left(-1\right)=9-20=-11< 0\)
Do đó: Tam thức này luôn âm với mọi x
c: \(\Delta=1^2-4\cdot1\cdot\left(-2\right)=9\)
Do đó: Tam thức này âm khi -2<x<1
Bằng 0 khi x=-2 hoặc x=1
Dương khi x<-2 hoặc x>1

a) \(f(x) = - 3{x^2} + x - \sqrt 2 \)có \(\Delta = 1 - 12\sqrt 2 < 0\)và a=-3<0 nên \(f(x) < 0\)với mọi \(x \in \mathbb{R}\)
b) \(g(x) = {x^2} + 8x + 16\) có \(\Delta = 0\)và a=1>0 nên g(x) có nghiệm kép \(x = - 4\) và g(x) >0 với mọi \(x \ne - 4\)
c) \(h(x) = - 2{x^2} + 7x - 3\) có \(\Delta = 25\)>0 và a=-2<0 và có 2 nghiệm phân biệt \({x_1} = \frac{1}{2};{x_2} = 3\)
Do đó ta có bảng xét dấu h(x)
Suy ra h(x) <0 với mọi \(x \in \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {3; + \infty } \right)\) và h(x)>0 với mọi \(x \in \left( {\frac{1}{2};3} \right)\)