Chứng tỏ số hữu tỉ là phân số tối giản, với mọi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi U(2m+9 ; 14m+62) = d
thì: 7*(2m+9) - (14m+62) chia hết cho d
=> 1 chia hết cho d.
Vậy d = 1
Hay số hữu tỷ x tối giản. ĐPCM.

\(x=\dfrac{2m+9}{14m+62}\)
Gọi \(linh\) là \(UCLN\left(2m+9;14,+62\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}14m+63⋮linh\\14m+62⋮linh\end{matrix}\right.\)
\(\Rightarrow\left(14m+63\right)-\left(14m+62\right)⋮linh\)
\(\Rightarrow14m+63-14m-62⋮linh\)
\(\Rightarrow1⋮linh\Rightarrow linh=1\)
Vậy \(x\) tối giản với mọi \(m\in N\)
Gọi d là ƯCLN(2m+9 ; 14m + 62) ( d \(\in\) N*)
\(\Rightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Rightarrow d⋮1\Rightarrow d=1\)
Vậy ƯCLN(2m+9;14m+62)=1
Vậy \(\dfrac{2m+9}{14m+62}\) là p/s tối giản

Giả sử \(x=\frac{2m+9}{14m+62}\) là p/s tối giản
X là p/s tối giản <=> 2m+9 và 14m+62 nguyên tố cùng nhau <=>2m+9 và 14m+62 có ƯCLN=1
Gọi d là ƯCLN(2m+9;14m+62)
Ta có: 2m+9 chia hết cho d => 7(2m+9) chia hết cho d=>14m+63 chia hết cho d (1)
14m+62 chia hết cho d (2)
Lấy (1)-(2),vế theo vế:
14m+63-(14m+62) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(2m+9;14m+62) là 1 hay 2m+9 và 14m+62 nguyên tố cùng nhau
=>điều giả sử là đúng
Vậy \(x=\frac{2m+9}{14m+62}\) là p/s tối giản

Gọi \(d=ƯCLN\left(2m+9;14m+62\right)\) (\(d\in N\)*)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+9⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}14m+63⋮d\\14m+62⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N\)*;\(1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(2m+9;14m+62\right)=1\)
\(\Leftrightarrow x=\dfrac{2m+9}{14m+62}\) tối giản với mọi n
Gọi d là UCLN(2m+9;14m+62)
\(\Leftrightarrow2m+9⋮d\Rightarrow7\left(2m+9\right)⋮d\Rightarrow14m+63⋮d\)
\(\Leftrightarrow14m+62⋮d\)
\(\Leftrightarrow\left(14m+63\right)-\left(14m+62\right)⋮d\)
\(14m+63-14m-62⋮d\)
\(1⋮d\)
\(\Leftrightarrow\dfrac{2m+9}{14m+62}\)tối giản với mọi m

Đặt \(\left(10n+9;15n+14\right)=d\)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3.\left(10n+9\right)⋮d\\2.\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow\left(30n+28\right)-\left(30n+27\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\frac{10n+9}{15n+14}\)là phân số tối giản với mọi n thuojc N
gọi d là ƯC(10n + 9; 15n + 14)
\(\Rightarrow\hept{\begin{cases}10n+9⋮d\\15n+14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(10n+9\right)⋮d\\2\left(15n+14\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}30n+27⋮d\\30n+28⋮d\end{cases}}}\)
\(\Rightarrow30n+28-\left(30n+27\right)⋮d\)
\(\Rightarrow30n+28-30n-27⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy \(\frac{10n+9}{15n+14}\) là phân số tối giản với mọi n tự nhiên

Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
Gọi d =ƯCLN(2m+9; 14m+62)
Vậy 2 m + 9 ⋮ d ⇒ 7 ( 2 m + 9 ) ⋮ d ⇔ 14 m + 63 ⋮ d 14 m + 62 ⋮ d ⇒ 14 m + 63 − ( 14 m + 62 ) ⋮ d ⇔ 1 ⋮ d ⇔ d = 1
Vậy ta được đpcm