Các số x+ 6y ; 5x + 2y; 8x + y theo thứ tự đó lập thành một cấp số cộng; đồng thời các số x- 1 ; y + 2 ; x – 3y theo thứ tự đó lập thành một cấp số nhân. Tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để giải phương trình $x^2 - 6y^2 = 1$ với $x, y$ là số nguyên tố, ta sử dụng phương pháp giải bằng phương pháp Pell như sau: Phương trình có dạng $x^2 - 6y^2 = 1$, tương đương với phương trình $x^2 - 6y^2 - 1 = 0$. Ta cần tìm nghiệm nguyên của phương trình này, có dạng $(x, y)$. Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 7, y_1 = 2$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên. $x_1 = 7, y_1 = 2$ $x_2 = 47, y_2 = 14$ $x_3 = 337, y_3 = 100$ $x_4 = 2387, y_4 = 710$ $x_5 = 16807, y_5 = 3982$ Vậy $(x, y) = (16807, 3982)$ là một nghiệm của phương trình $x^2 - 6y^2 = 1$, với $x$ và $y$ đều là số nguyên tố.

Lời giải:
$(x-1)(x+1)=6y^2$
$\Leftrightarrow x^2-1=6y^2$
$\Rightarrow x^2=6y^2+1$ lẻ $\Rightarrow x$ lẻ.
Ta biết 1 scp khi chia cho 4 thì dư $0$ hoặc $1$. Vì $x$ là số lẻ nên $x^2$ là scp lẻ $\Rightarrow$ $x^2$ chia $4$ dư $1$
$\Rightarrow 6y^2=x^2-1\vdots 4$
$\Rightarrow y^2\vdots 2$
$\Rightarrow y$ chẵn. Mà $y$ là số nguyên tố nên $y=2$.
Khi đó $x^2=6y^2+1=6.2^2+1=25$
$\Rightarrow x=5$ (thỏa mãn)
$

Sorry bạn nhưng mình từng giải bài này
Ta có phương trình đơn giản lại tương tự phương trình Pell như sau: $x^2 - 6y^2 = -1$ Ta có thể giải phương trình này bằng phương pháp Pell như sau: Giả sử $x_1, y_1$ là một nghiệm của phương trình, ta có thể tìm được một nghiệm khác bằng cách sử dụng công thức sau: $x_{n+1} = 5x_n + 12y_n$ $y_{n+1} = 2x_n + 5y_n$ Với $x_1 = 5, y_1 = 1$, ta có thể tìm được các giá trị $x$ và $y$ bằng cách lần lượt tính các giá trị $x_n$ và $y_n$ bằng công thức trên cho đến khi tìm được một nghiệm thỏa mãn $x^2 - 6y^2 = -1$. $x_1 = 5, y_1 = 1$ $x_2 = 29, y_2 = 5$ $x_3 = 169, y_3 = 29$ $x_4 = 985, y_4 = 169$ $x_5 = 5741, y_5 = 985$ Vậy $(x, y) = (5741, 985)$ là một nghiệm của phương trình $x^2 - 6y^2 = -1$. Ta kiểm tra xem $x$ và $y$ có phải đều là số nguyên tố hay không. Ta nhận thấy rằng $x$ chia hết cho 7, do đó $x$ không phải là số nguyên tố. Tuy nhiên, ta thấy rằng $y$ là số nguyên tố. Vì vậy, đáp án của bài toán là $(x, y) = (5741, 985)$ với $y$ là số nguyên tố.

2xy-6y+x=9
=>2yx-3.2y+x=9
=>2y.(x-3)+x=9
=>2y.(x-3)+(x-3)=9-3
=>(x-3).(2y+1)=6
=>x-3 ;2y+1 \(\in\)Ư(6)
Ư(6)={1 ;-1 ;2 ;-2 ;3 ;-3 ;6 ;-6}
Ta có bảng giá trị
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2y+1 | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
2y | 5 | -7 | 2 | -4 | 1 | -3 | 0 | -2 |
y | \ | \ | 1\(\in Z\) | -2\(\in Z\) | \ | \ | 0\(\in Z\) | -1\(\in Z\) |
x | \ | \ | 5\(\in Z\) | 1\(\in Z\) | \ | \ | 9\(\in Z\) | -3\(\in Z\) |
Thử lại các đáp án đều đúng
Vậy (x,y) \(\in\){(5,1) ;(1,-2) ;(9,0),(-3,-1)}


Lời giải:
$|x|-|y|=60$
$|6y|-|y|=60$
$5|y|=60$
$|y|=12$
$\Rightarrow y=\pm 12$
$\Rightarrow x=6y=\pm 72$
Vậy $(x,y)=(72, 12), (-72, -12)$

Theo giả thiết ta có x + 6 y + 8 x + y = 2 5 x + 2 y x − 1 x − 3 y = y + 2 2
⇔ x = 3 y 3 y − 1 3 y − 3 y = y + 2 2 ⇔ x = 3 y 0 = y + 2 2 ⇔ x = − 6 y = − 2 .
Suy ra x 2 + y 2 = 40.
Chọn đáp án A.