Cho các số phức và các số z thỏa mãn Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của Tính tổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án B.
Số phức z 1 = 1 có điểm biểu diễn là A 1 ; 0 , số phức z 2 = 2 − 3 i có điểm biểu diễn là B 2 ; − 3
Gọi E x ; y là điểm biểu diễn của số phức z, khi đó z = x + y i , x , y ∈ ℝ
Suy ra
P = x − 1 + y i + x − 2 + y + 3 i = x − 1 2 + y 2 + x − 2 2 + y + 3 2
⇒ P = E A + E B .
Mặt khác
z − 1 − i + z − 3 + i = 2 2 ⇔ x − 1 + y − 1 i + x − 3 + y + 1 i = 2 2
⇔ x − 1 2 + y − 1 2 + x − 3 2 + y + 1 2 = 2 2 *
Gọi M 1 ; 1 , N 3 ; − 1 thì E M + E N = 2 2 = M N ⇒ Điểm E thuộc đoạn MN.
Ta có phương trình đường thẳng MN là x + y + z − 2 = 0 với x ∈ 1 ; 3
Bài toán trở thành:
Cho điểm E thuộc đoạn MN . Tìm giá trị lớn nhất của biểu thức P = E A + E B
Đặt f ( x ) = x + y − 2. Ta có
f 1 ; 0 = 1 + 0 − 2 = − 1 f 2 ; − 3 = 2 − 3 − 2 = − 3 ⇒ f 1 ; 0 . f 2 ; − 3 = 3 > 0 . Suy ra hai điểm A,B nằm cùng về một phía đối với MN . Gọi A' là điểm đối xứng với A qua MN thì A ' 2 ; 1 .Khi đó
P = E A + E B = E A ' + E B ≥ A ' B = 4 .
Dấu = xảy ra khi và chỉ khi
E ∈ A ' B ⇒ E = A ' B ∩ M N ⇒ E 2 ; 0 hay z = 2.
Do điểm E luôn thuộc đường thẳng MN nên P = E A + E B đạt giá trị lớn nhất khi E ≡ M hoặc E ≡ N .
Có
M A + M B = 1 + 17 N A + N B = 2 5 ⇒ M A + M B > N A + N B ⇒ max P = M A + M B...