Tìm số phức z thỏa mãn (1+2i)(z-1)-5+2i=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án C.
Ta có z - 1 2 - i + i = 5 ⇔ z + 2 i = 5 ⇒ w + 2 = 1 - i z + 2 i = 5 2 . Vậy tập hợp điểm biểu diễn số phức w là đường tròn tâm I(-2;0) bán kính R = 5 2 , tức là đường tròn C : x + 2 2 + y 2 = 50 .

Đáp án C.
Ta có
z
-
1
2
-
i
+
i
=
5
Vậy tập hợp điểm biểu diễn số phức w là đường tròn tâm I(-2;0) bán kính R = 5 2 tức là đường tròn (C): ( x + 2 ) 2 + y 2 = 50

\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?

Đáp án A
Đặt z = x + yi với x,y ∈ ℝ , ta có:
= 5x - 5yi
Do đó
Vậy w có phần ảo bằng 2 1009