B=2+4+6+.....+2n (n thuộc N sao) là tích của hai số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Số số hạng là \(\dfrac{2n-2}{2}+1=n-1+1=n\left(số\right)\)
Tổng của dãy số là:
\(\left(2n+2\right)\cdot\dfrac{n}{2}=n\left(n+1\right)\)
=>A là tích của hai số tự nhiên liên tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
a) 4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n -1) - 3 chia hết cho 2n - 1
=> -3 chia hết ccho 2n -1
=> 2n -1 thuộc Ư(-3) = {1 ; -1 ; 3 ;- 3}
Xét 4 trường hợp , ta có :
2n - 1 = 1 => n = 1
2n - 1 = -1 => n = 0
2n - 1 = 3 => n = 2
2n - 1 = -3 => n = -1
b) n2 + 2 chia hết cho n - 1
n . n - n + n + 2 chia hết cho n -1
n(n - 1) + n + 2 chia hết hoc n - 1
=> n + 2 chia hết cho n -1
=> n - 1 + 3 chia hết cho n - 1
=> 3 chia hết cho n -1
=> n - 1 thuộc Ư(3) = {1 ; -1; 3 ; -3}
Còn lại giống bài a
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\) với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\) nên dẫn đến :
\(TH1:2n-1=3u^2;2n+1=v^2\)
\(TH2:2n-1=u^2;2n+1=3v^2\)
\(TH1:\)
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2=2\left(mod3\right)\)
Còn lại TH2 cho ta \(2n-1\) là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
\(TH1:\Rightarrow\hept{\begin{cases}2n-1=3p^2\\2n+1=3q\end{cases}}\)
\(TH2:\Rightarrow\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2=2\left(mod3\right)\) ( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\) ( dpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
Số số hạng của tổng C là:
\(\left(n-1\right)\div1+1=n\) (số)
Tổng C là:
\(C=\frac{\left(n+1\right)n}{2}\) => \(2C=n\left(n+1\right)\)
Mà n là số tự nhiên => n(n+1) là tích 2 STN liên tiếp
=> đpcm
Số số hạng tập hợp B
\(\left(2n-2\right):2+1\)
\(=2\left(n-1\right):2+1\)
\(=n-1+1\)
\(=n\)
Tổng của B
\(=\left(2n+2\right)\cdot n:2\)
\(=2\left(n+1\right)\cdot n:2\)
\(=n\left(n+1\right)\)
Vậy B là tích hai số tự nhiên liên tiếp
Bài giải
\(B=2+4+6+...+2n=\frac{\left[\left(2n-2\right)\text{ : }2+1\right]\left(2n+2\right)}{2}=n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow\text{ ĐPCM}\)