Cho A = (1/22 - 1) . (1/32 - 1) . (1/42 - 1) ...... (1/1002 - 1)
So sánh A với -1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: 675km = 67 500 000cm
Trên bản đồ tỉ lệ 1:2 500 000 quãng đường dài là:
67 500 000 : 2 500 000 = 27 (cm)
Đáp số: 27 cm
Xin lỗi nha
Viết A lại dưới dạng -A
Viết -A thành dạng tích các số tự nhiên liên tiếp rồi dùng phép khử liên tiếp là OK
Tính
A = 2^100 - 2^99 + 2^98 - 2^97 + .... + 2^2 - 2
B = 3^100 - 3^99 + 3^98 - 3^97 + .... + 3^2 - 3 + 1
Ta có :
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(\Leftrightarrow A=-\frac{3}{4}.-\frac{8}{9}....-\frac{9999}{10000}\)
\(\Leftrightarrow A=\frac{-3.8....9999}{4.9.10000}=\frac{-3.2.4.....99.101}{2.2.3.3....100.100}=\frac{-101}{100}\)
Mà \(-\frac{1}{2}=-\frac{50}{100}>-\frac{101}{100}\)
Vậy A < \(-\frac{1}{2}\)
A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
= \(\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}=-\frac{3.8.15...9999}{2.2.3.3.4.4...100.100}=-\frac{1.3.2.4.3.5...99.101}{2.2.3.3.4.4...100.100}\)
= \(-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{1.101}{100.2}=\frac{-101}{200}< \frac{-100}{200}=-\frac{1}{2}\)
=> A < - 1/2
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}-1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{100}-1\right)\left(\frac{1}{100}+1\right)\)
Xét \(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right)\left(\frac{-3}{4}\right)...\left(\frac{-99}{100}\right)\)
Có 99 số hạng nhân với nhau nên kết quả cuối sẽ nhận dấu âm--->\(B=\frac{-1}{100}\)
Xét \(C=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{100}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{101}{100}=\frac{101}{2}\)
\(A=B.C=\frac{-1}{100}.\frac{101}{2}=\frac{-101}{200}< \frac{-100}{200}=\frac{-1}{2}\)