1 : cho tứ giác ABCD . Chứng tỏ AC +BD > AB+ CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi \(O\)là giao điểm \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)
Cộng lại vế theo vế ta được:
\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).
b) Theo bất đẳng thức tam giác:
\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)
Cộng lại vế theo vế ta được:
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) OA+OB >AB ( bất đẳng thức tam giác)
OD+OC >DC ( bất đẳng thức tam giác )
b) từ 2 đều ở câu a => AC +BD > AB +CD
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi I là gđ của AC và BD
Theo bất đẳng thức trong tam giác có:
\(AB< IB+IA\) (1)
\(CD< ID+IC\)(2)
Do đó từ (1) và (2) có:
\(AB+CD< IA+IB+IC+ID\)
\(\Leftrightarrow AB+CD< \left(IA+IC\right)+\left(IB+ID\right)\)
\(\Leftrightarrow AB+CD< AC+DB\)
(hình bạn tự vẽ nha )
A B C D M
gọi giao điểm của AC và BD là M
xét \(\Delta ABM\) có \(AM+BM>AB^{\left(1\right)}\)
xét \(\Delta DCM\) có\(DM+MC>DC^{\left(2\right)}\)
Từ \(^{\left(1\right)},^{\left(2\right)}\) ta có
\(AM+MC+BM+MD>AB+CD\)
hay \(AC+BD>AB+CD\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý 2 của đường trung bình trong hình thang
Có AB//CD => ABCD là hình thang. EF là đường trung bình của hình thang
Nên \(\text{EF}=\frac{CD+AB}{2}\) .
Sai rồi vì EF đâu phải đường trung bình đâu, E là trung điểm BD, F là trung điểm AC và đề bài yêu cầu chứng minh EF=(CD-AB)/2 mà.
Gọi giao của AC và BD là M
Xét t/g ABM có AM + BM > AB (1)
Xét t/g DCM có DM +MC > DC (2)
Cộng (1) và (2) ta có:
AM +MC + BM +DM > AB + CD
hay AC + BD > AB + CD(đpcm)