tìm m để hệ sau có nghiệm
\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=6-m^2\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
1: Để hệ có nghiệm duy nhất thì \(\frac14<>\frac{m+1}{-1}\)
=>m+1<>-4
=>m<>-5
\(\begin{cases}x+\left(m+1\right)y=1\\ 4x-y=-2\end{cases}\Rightarrow\begin{cases}4x+\left(4m+4\right)y=4\\ 4x-y=-2\end{cases}\)
=>\(\begin{cases}4x+\left(4m+4\right)y-4x+y=4+2=6\\ 4x-y=-2\end{cases}\Rightarrow\begin{cases}y\left(4m+5\right)=6\\ 4x=y-2\end{cases}\)
=>\(\begin{cases}y=\frac{6}{4m+5}\\ 4x=\frac{6}{4m+5}-2=\frac{6-8m-10}{4m+5}=\frac{-8m-4}{4m+5}\end{cases}\)
=>\(\begin{cases}y=\frac{6}{4m+5}\\ x=\frac{-2m-1}{4m+5}\end{cases}\)
Để (x;y) nguyên thì \(\begin{cases}6\vdots4m+5\\ -2m-1\vdots4m+5\end{cases}\Rightarrow\begin{cases}6\vdots4m+5\\ -4m-2\vdots4m+5\end{cases}\)
=>\(\begin{cases}6\vdots4m+5\\ -4m-5+3\vdots4m+5\end{cases}\Rightarrow\begin{cases}6\vdots4m+5\\ 3\vdots4m+5\end{cases}\Rightarrow3\vdots4m+5\)
=>4m+5∈{1;-1;3;-3}
=>4m∈{-4;-6;-2;-8}
=>m∈{-1;-3/2;-1/2;-2}
mà m nguyên và m<>-5
nên m∈{-1;-2}
2: \(x^2+y^2=0,25\)
=>\(\left(\frac{6}{4m+5}\right)^2+\left(\frac{-2m-1}{4m+5}\right)^2=0,25=\frac14\)
=>\(\frac{36}{\left(4m+5\right)^2}+\frac{\left(2m+1\right)^2}{\left(4m+5\right)^2}=\frac14\)
=>\(\left(4m+5\right)^2=4\left\lbrack\left(2m+1\right)^2+36\right\rbrack\)
=>\(16m^2+40m+25=4\cdot\left\lbrack4m^2+4m+1+36\right\rbrack=4\left(4m^2+4m+37\right)\)
=>\(16m^2+40m+25=16m^2+16m+148\)
=>24m=123
=>\(m=\frac{123}{24}=\frac{41}{8}\) (nhận)
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)
\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)
\(\Leftrightarrow-a^2+15a-42=m\)
Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)
\(\Rightarrow-42\le m\le12\)
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)
=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)
\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)
\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)
=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)
=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)
=>m(5m+4)=18m-9
=>\(5m^2-14m+9=0\)
=>(m-1)(5m-9)=0
=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=m\\\left(x+y\right)^2-2xy=6-m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=m\\xy=m^2-3\end{matrix}\right.\)
Để hệ đã cho có nghiệm
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow m^2\ge4\left(m^2-3\right)\)
\(\Leftrightarrow m^2\le4\Rightarrow-2\le m\le2\)
Ta có : \(x^2+y^2=6-m^2\)
=> \(\left(x+y\right)^2-2xy=6-m^2\)
=> \(xy=\frac{6-2m^2}{-2}=m^2-3\)
Ta có : \(x^2-Sx+P=0\)
=> \(x^2-mx+m^2-3=0\)
=> \(\Delta=b^2-4ac=m^2-4\left(m^2-3\right)\)
=> \(\Delta=m^2-4m^2+12=12-3m^2\)
- Để phương trình có hai nghiêm phân biệt thì :
\(\Delta=12-3m^2>0\)
=> \(m^2< 4\)
=> \(-2< m< 2\)
Vậy ...