cho các số thực ko âm a,b,c thỏa mãn a+b+c=1 tìm gtln và gtn của bthức p =ab+bc+ac-abc/a+2b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0
Giả sử cc lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13
Do a,b,c≥0a,b,c≥0 nên
Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1
Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0

Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
Do \(0\le a;b;c\le1\Rightarrow ab\ge abc\Rightarrow\frac{ab+bc+ca-abc}{a+2b+c}\ge\frac{bc+ca}{a+2b+c}\ge0\)
\(P_{min}=0\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Tìm max:
\(P=\frac{ab+bc+ca-abc}{a+2b+c}=\frac{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}{a+2b+c}=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a+2b+c}\)
\(P\le\frac{1}{4}.\frac{\left(a+2b+c\right)^2\left(c+a\right)}{\left(a+2b+c\right)}=\frac{\left(a+2b+c\right)\left(a+c\right)}{4}=\frac{\left(1+b\right)\left(1-b\right)}{4}\)
\(P\le\frac{1-b^2}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=c=\frac{1}{2}\\b=0\end{matrix}\right.\)