Mọi người giải giúp mình bài này với, hứa tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)
\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)
\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)
\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)
\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow\dfrac{3}{4}\cdot\dfrac{9}{22}-\left|-3x+\dfrac{8}{3}\right|=\dfrac{3}{4}\\ \Rightarrow\left|-3x+\dfrac{8}{3}\right|=\dfrac{11}{6}-\dfrac{3}{4}=\dfrac{13}{12}\\ \Rightarrow\left[{}\begin{matrix}-3x+\dfrac{8}{3}=\dfrac{13}{12}\\3x-\dfrac{8}{3}=\dfrac{13}{12}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=\dfrac{19}{12}\\3x=\dfrac{15}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{19}{36}\\x=\dfrac{5}{4}\end{matrix}\right.\)
\(\dfrac{3}{4}:2\dfrac{4}{9}-\left|-3x+2\dfrac{2}{3}\right|=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{3}{4}:\dfrac{22}{9}-\left|-3x+\dfrac{8}{3}\right|=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{27}{88}-\left|-3x+\dfrac{8}{3}\right|=\dfrac{3}{4}\)
\(\Rightarrow\left|-3x+\dfrac{8}{3}\right|=-\dfrac{39}{88}\left(VLý\right)\)
Vậy \(S=\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{4}km^2=25000m^2\)
\(\frac{1}{4}km^2450m^2=25450m^2\)
HT NHE
![](https://rs.olm.vn/images/avt/0.png?1311)
-Trọng lượng của 20kg than:
\(F=10m=10.24=240\left(N\right)\)
a, -Công của động cơ :
\(A_1=F.s=240.5=1200\left(J\right)\)
-Công suất của động cơ:
\(P=\dfrac{A_1}{t}=\dfrac{1200}{1}=1200\left(W\right)\)
b, 1h=3600s
-Công của động cơ trong 1 giờ:
\(A_2=P.3600=1200.3600=4320000(J)=4320(kJ)\)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\b+c+d=c+d+a=d+a+b=a+b+c\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
Với \(a+b+c+d=0\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(d+a\right)}{d+a}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
\(=-1-1-1-1=-4\)
Nếu \(a=b=c=d\):
\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
có bài j đâu