CTR từ tỉ lệ thức a/b = c/d ta suy ra tỉ lệ thức a.c/b.d = a^2 + c^2 /b^2 + d^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ban coi trong sach giao khoa ti le thuc se co mot phan chung minh cho ban thay bang cach dat a/b=c/d=k nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
Ta có:
\(\frac{a.c}{b.d}=\frac{b.k.d.k}{b.d}=k^2\) (1)
\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(b.k+d.k\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=k^2\) (2)
Từ (1) và (2) suy ra \(\frac{a.c}{b.d}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)
\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)
và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)
Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
`Answer:`
a. Ta đặt \(\hept{\begin{cases}k=\frac{a}{b}=\frac{c}{d}\\bk=a\\dk=c\end{cases}}\)
\(\Rightarrow\frac{a+b}{b}=\frac{b+bk}{b}=\frac{\left(k+1\right).b}{b}=k+1\left(1\right)\)
\(\Rightarrow\frac{c+d}{d}=\frac{d+dk}{d}=\frac{\left(k+1\right).d}{d}=k+1\left(2\right)\)
Từ `(1)(2)=>\frac{a+b}{b}=\frac{c+d}{d}`
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=k^2;\frac{a}{c}.\frac{b}{d}=k^2\Rightarrow\frac{a^2}{c^2}=\frac{ab}{c\text{d}}\left(=k^2\right)\)
(Bạn xem cách trình bày có hợp lý không giúp mình nha!)