K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

 ơi STN = số thứ nhất 

      STH = SỐ THỨ 2 NHÉ

       STB = SỐ THỨ 3 NHA

Chứng minh rằng nếu \(x>0\)thì \(\frac{1}{x}-\frac{1}{x+1}>0\):

Ta có : \(\frac{1}{x}-\frac{1}{x+1}>0\Rightarrow\frac{1}{x}>\frac{1}{x+1}\)

\(\Rightarrow x+1>x\)(đúng)

Học tốt

17 tháng 2 2020

nếu x-y>0 suy ra x-y là một số dương nên x= y=q ( q là một số dương)

9 tháng 11 2016

Giả sử \(x,y\in Q,x=\frac{a}{b},y=\frac{c}{d},a,b,c,d\in Z;b,d>0\)

a) Nếu \(x>y\), nghĩa là \(\frac{a}{b}>\frac{c}{d}\). Ta có:

\(ad-bc>0.\)\(b>0,d>0,bd>0\) nên

\(\frac{ad-bc}{b.d}>\frac{0}{b.d}=0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a}{b}-\frac{c}{d}>0,\)

tức là \(x-y>0\)

b) Ngược lại nếu \(x-y>0\), nghĩa là

\(\frac{a}{b}-\frac{c}{d}>0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a.d-b.c}{b.d}>\frac{0}{b.d}\\ \Rightarrow a.d-b.c>0\Rightarrow a.d>b.c\\ \Rightarrow\frac{a.d}{b.d}>\frac{b.c}{b,d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)

Tức là \(x>y\)

 

25 tháng 1 2018

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

<=> x^2+2xy+y^2 >= 4xy

<=> (x+y)^2 >= 4xy

Với x,y > 0 thì chia 2 vế bđt cho (x+y).xy > 0 ta được :

x+y/xy >= 4/x+y

<=> 1/x + 1/y >= 4xy

=> ĐPCM

Dấu "=" xảy ra <=> x=y > 0

Tk mk nha

12 tháng 6 2017

x+1/y = 1, ta có: 
+ x=1-1/y (1) 
+ (xy+1)/y=1 => xy+1=y (2) 
y+1/x >=4 
<=> (xy+1)/x >=4 
(1), (2) => y/ (y-1) /y >=4 
<=> y^2/ (y-1) >=4 
<=> y^2 >= 4y -4 
<=> y^2 -4y +4 >=0 
<=> (y-2)^2 >=0 (đúng)

12 tháng 6 2017

Bạn áp dụng bất đẳng thức sau để giải : 
1/x + 1/y >= 4/(x+y) (cái này thì dẽ chứng mình thôi, dùng cô si cho 2 số đó, tiếp tục dùng cô si dưới mẫu là ra) (*) 

Áp dụng kết quả đó ta có 
1/ (2x +y+z) = 1/(x+ y+z+x) <= 1/4 *[ 1/(x+y) + 1/(y+z)] 
rồ tiếp tục áp dụng kết quả (*) ta lại có 
1/4 *[1/(x+y) + 1/(y+z)] <= 1/16 *( 1/x + 1/y + 1/z + 1/x) 
Tương tự ta có 1/(2y + x +z) <= 1/16 *(1/x+1/y +1/z + 1/y) 
Cái cuối cùng cũng tương tự như vậy 
Cộng lại ba bdt trên ta sẽ có được điều cần chứng minh 

29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0