Cho đường tròn (O;R)và điểm A nằm ngoài (O).Từ A kẻ 2 tiếp tuyến AB và AC với (O),( B,C là các tiếp điểm).Gọi H là điểm của OA và BC
a)CM Tg ABOC nội tiếp
b)CM OA là đường trung trực của BC
c)Lấy điểm D đối xứng B qua O.Gọi E là giao điểm của đoạn AD với (O),E không trùng D
CM:
#Hỏi cộng đồng OLM
#Toán lớp 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
CM,CA là các tiếp tuyến
nen CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC vuông góc với MA tại trung điểm của MA
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD vuông góc với MB tại trung điểm của MB
Từ (1)và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính DC
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')

Băng Băng 2k6Vũ Minh TuấnNguyễn Việt LâmHISINOMA KINIMADONguyễn Lê Phước ThịnhNguyễn Thị Ngọc ThơNguyễn Thanh HiềnQuân Tạ Minhtth

cho tam giac abc ngoai tiep duong tron tam O va noi tiep duong tron tam O' ke duong thang AO cat O' tai D. Cm:CD=BD=OD
a, - Xét ( O ) có : AB là tiếp tuyến của ( O ) tại B .
=> \(AB\perp OB\)
=> \(\widehat{ABO}=90^o\)
CMTT : \(\widehat{ACO}=90^o\)
-> \(\widehat{ABO}+\widehat{ACO}=90^o+90^o=180^o\)
Mà 2 góc trên là 2 góc đối .
=> Tứ giác ABOC nội tiếp .
b, - Xét ( O ) có : Hai tiếp tuyến OA, OB cắt nhau tại A .
=> AB = AC .
- Ta có : \(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\OB=OC\left(=R\right)\end{matrix}\right.\)
=> AO là đường trung trực của BC .
c, - Ta có : D đối xứng với B qua O .
=> OD = OB = R .
=> \(D\in\left(O\right)\), O, D, B thẳng hàng .
=> BD = 2R -> BD là đường kính .
- Xét ( O ) có : BD là đường kính , \(E\in\left(O\right)\)
=> Tam giác BED vuông tại E .
- Xét \(\Delta BED\) và \(\Delta ABD\) có :
\(\left\{{}\begin{matrix}\widehat{BAD}\left(chung\right)\\\widehat{BEA}=\widehat{ABD}\left(=90^o\right)\end{matrix}\right.\)
=> \(\Delta BED\) ~ \(\Delta ABD\) ( g - g )
=> ĐPCM ( tỉ lệ cạnh tương ứng )
a) Vì ˆOBA=ˆOCA=90oOBA^=OCA^=90o nên cả 4 điểm O,B,A,CO,B,A,C cùng thuộc đường tròn đường kính OAOA
b) Chứng minh AB=ACAB=AC. Mặt khác OB=OC=ROB=OC=R
Do đó OA là trung trực của BC
c) Ta có DB là đường kính nên ˆBED=90oBED^=90o
Từ đó chứng minh được ΔBED∼ΔABD(g.g)⇒DEBE=BDBAΔBED∼ΔABD(g.g)⇒DEBE=BDBA
d) Chứng minh ΔBHO∼ΔABO(g.g)⇒HO