Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N. a) Chứng minh: CDKO nội tiếp. b) Chứng minh MC2 =MA. MB. c) Chứng minh: DCN cân. d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi H,K lần lượt là các tiếp điểm của các tiếp tuyến cắt nhau tại M của (O;r)
=>OH=OK và OH\(\perp\)MB tại H và OK\(\perp\)MD tại K
Xét (O,R) có
OH,OK lần lượt là khoảng cách từ O xuống các dây AB,CD
OH=OK
Do đó: \(sđ\stackrel\frown{AB}=sđ\stackrel\frown{CD}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hai tam giác IMC và DMI có:
\(\left\{{}\begin{matrix}\widehat{IDM}\text{ chung}\\\widehat{CIM}=\widehat{IDM}\left(\text{góc nội tiếp và góc tiếp tuyến cùng chắn cung IM}\right)\end{matrix}\right.\)
\(\Rightarrow\Delta IMC\sim\Delta DMI\) (g.g)
\(\Rightarrow\dfrac{MI}{DM}=\dfrac{MC}{MI}\Rightarrow MI^2=MC.MD\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Xét tam giác AOB có AO = OB = R nên tam giác AOB cân tại O (1)
Theo tính chất hai tiếp tuyến cắt nhau có OM là đường phân giác của góc AOB (2)
Từ (1) và (2) suy ra: OM là đường trung trực của AB.
Ta có điểm N thuộc đường trung trực của AB nên NA = NB
Suy ra, tam giác NAB là tam giác cân tại N
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét (O) có:
CDA và ABC là 2 góc nội tiếp cùng chắn cung AC
=> góc CDA = góc ABC hay góc MDA= gócMBC
Xét tam giác MDA và tam giác MBC có:
góc MDA = góc MBC(cmt)
góc M chung
=> 2 tam giác trên đồng dạng(g.g)
=>\(\dfrac{MD}{MB}=\dfrac{MA}{MC}\)
=>MA.MB=MC.MD