Chứng minh :M=2n+1/n(n thuộc Z;n khác 0)là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi


a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z

a: Để A là phân số thì n-1<>0
hay n<>1
b: Để A là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)

\(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)\)
Vì n và n+1 là 2 số nguyên liên tiếp nên n(n+1) chia hết cho 2 \(=>-5n\left(n+1\right)⋮10\)
Vậy (2n+1)(n^2-3n-1)-2n^3+1 chia hết cho 10 với mọi n đều thuộc Z

+) Giả sử n là số chẵn
Nếu n là số chẵn thì n chia hết cho 2
=> n(n+)(2n+1) chia hết cho 2
+) Giả sử n là số lẻ
Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2
<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z (1)
Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2
(+) Với n=3k
=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+1
=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+2
=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )
=> n(n+1)(2n+1) chia hết cho 6
=> ĐPCM
__HT__ Merry Christmas__

A = -2n[n+1] + n[2n - 3]
= -2n2 - 2n + 2n2- 3n
= [-2n2 + 2n2] - 2n - 3n
= 0 - 2n - 3n
= -5n \(⋮5\)
A = -2n(n + 1) + n(2n + 3)
=> A = -2n2 -2n + 2n2 - 3n
=> A = -5n
Do: -5 chia hết cho 5 => -5n chia hết cho 5 với mọi n thuộc Z
Vậy A chia hết cho 5 với mọi n thuộc Z

\(2n^2\left(n+1\right)+n\left(n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n+2\right)\)
=n(n+1)(n-1)+n(n+1)(n+2)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên n(n-1)(n+1)⋮3!=6(1)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên n(n+1)(n+2)⋮3!=6(2)
Từ (1),(2) suy ra n(n+1)(n-1)+n(n+1)(n+2)⋮6
=>\(2n^2\left(n+1\right)+n\left(n+1\right)\) ⋮6
Để chứng minh rằng biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 6 với \(n \in \mathbb{Z}\), ta cần chứng minh rằng biểu thức này chia hết cho 2 và 3, vì một số chia hết cho 6 khi và chỉ khi nó chia hết cho cả 2 và 3.
Bước 1: Chia hết cho 2
Ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Chia nó thành hai phần:
- Phần thứ nhất: \(2 n^{2} \left(\right. n + 1 \left.\right)\) chắc chắn chia hết cho 2 vì có yếu tố 2.
- Phần thứ hai: \(n \left(\right. n + 1 \left.\right)\) là tích của hai số liên tiếp. Một trong hai số này chắc chắn chia hết cho 2, nên \(n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Do đó, cả hai phần của biểu thức đều chia hết cho 2, nên tổng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 2.
Bước 2: Chia hết cho 3
Tiếp theo, ta cần chứng minh rằng \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Xét biểu thức:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)
Ta sẽ xét các trường hợp với \(n m o d \textrm{ } \textrm{ } 3\) (tức là \(n\) chia cho 3 có dư 0, 1 hoặc 2).
Trường hợp 1: \(n \equiv 0 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 0 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k\) với \(k \in \mathbb{Z}\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k \left.\right)^{2} \left(\right. 3 k + 1 \left.\right) + \left(\right. 3 k \left.\right) \left(\right. 3 k + 1 \left.\right)\)
Vì \(n = 3 k\), ta thấy cả hai phần của biểu thức đều chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\)chia hết cho 3.
Trường hợp 2: \(n \equiv 1 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 1 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k + 1\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 1 \left.\right)^{2} \left(\right. 3 k + 2 \left.\right) + \left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\)
Ta có thể tính chi tiết từng phần, nhưng vì \(\left(\right. 3 k + 1 \left.\right) \left(\right. 3 k + 2 \left.\right)\) luôn chia hết cho 3, nên \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Trường hợp 3: \(n \equiv 2 \left(\right. m o d 3 \left.\right)\)
- Khi \(n \equiv 2 \left(\right. m o d 3 \left.\right)\), ta có \(n = 3 k + 2\).
- Biểu thức trở thành:
\(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right) = 2 \left(\right. 3 k + 2 \left.\right)^{2} \left(\right. 3 k + 3 \left.\right) + \left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\)
Cũng như các trường hợp trên, \(\left(\right. 3 k + 2 \left.\right) \left(\right. 3 k + 3 \left.\right)\) chia hết cho 3, do đó \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho 3.
Kết luận:
Vì biểu thức \(2 n^{2} \left(\right. n + 1 \left.\right) + n \left(\right. n + 1 \left.\right)\) chia hết cho cả 2 và 3, nên nó chia hết cho 6 với mọi \(n \in \mathbb{Z}\).
Gọi \(\left(2n+1,n\right)\) là \(d\).
Vì \(\left(2n+1,n\right)\) là \(d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\n⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-n⋮d\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\left(2n+1,n\right)=1\)
\(\Rightarrow2n+1\)và \(n\)là 2 SNT cùng nhau
\(\Rightarrow\)Phân số \(\frac{2n+1}{n}\)tối giản (đpcm)
Đặt: ( 2n + 1 ; n ) = d
=> ( 2n + 1 - n ; n ) = d
=> (n + 1; n ) = d
=> ( n + 1 - n ; n ) = d
=> (1; n ) = d
=> d = 1
Như vậy: ( 2n + 1; n ) = 1 => 2n + 1; n là hai số nguyên tố cùng nhau
=> M là phân số tối giản