K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

đợi chút đnag làm nha 

hì hì

#

17 tháng 3 2020

a) ta có \(\widehat{AMB}=\widehat{AKB}=90^0\)( góc nội tiếp chắn nửa (O)

=>\(\widehat{AKB}+\widehat{BIE}=90^0+90^0=180^0\)

=> Tứ giác IEKB nội tiếp đường tròn

b)+)Ta có \(AB\perp MN\)tại \(\widebat{AM}=\widebat{AN}\)

=>\(\widehat{AME}=\widehat{AKM}\)( 2 góc nội tiếp cùng chắn 2 cung bằng nhau)

tam giác AME zà tam giác AKM có\(\widehat{MAK}\)chung

                                                          \(\widehat{AME}=\widehat{AKM}\left(cmt\right)\)

=> tam giác AME = tam giác AKM(g.g)

=>\(\frac{AM}{AK}=\frac{AE}{AM}=AM^2=AE.AK\)

+) ta có \(\widehat{AMB}=90^0\)(góc nội tiếp chắn nửa đường tròn , áp dụng hệ thức lượng trong tam giác zuông có

\(MB^2=BỊ.AB\)

Dó đó\(AE.AK+BI.AB=MA^2+MB^2=AB^2=4R^2\)(do tam giác AMB zuông tại H )

c) ..........

14 tháng 5 2021

HDDRUNJ.png

a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow AM\perp MB\)

Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình 

\(\Rightarrow\Delta ANB\)cân tại B

\(\Rightarrow NB=BA\)

\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định

b) Vì BM là đường cao của tam giác ABN cân tại B

=> BM là phân giác góc ABN

=> góc ABM= góc NBM

Xét tam giác ARB và tam giác NRB có:

\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)

\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)

\(\Rightarrow RN\perp BN\)

\(\Rightarrow RN\)là tiếp tuyến của (C)

c) Ta có: A,P,B thuộc (O); AB là đường kính

\(\Rightarrow\widehat{APB}=90^0\)

\(\Rightarrow AP\perp BP\)

\(\Rightarrow RN//AP\)( cùng vuông góc với NB )

Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q

\(\Rightarrow Q\)là trực tâm tam giác NAB

\(\Rightarrow NQ\perp AB\)

=> NQ // AR(  cùng vuông góc với  AB)

Xét tứ giác ARNQ có:

\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành

Mà 2 đường chéo RQ và AN vuông góc với nhau

=> ARNQ là hình thoi 

18 tháng 8 2019

A B C O M N E I K O'

a) Ta có ^BME = ^BOE = 2.^BIE (= 2.^BIM) => ^BIM = ^MBI = ^BME/2 => \(\Delta\)MBI cân tại M (đpcm).

b) Ta dễ thấy ^KNA = ^OBA = ^OAB (= 300) => \(\Delta\)NKA cân tại K => KA = KN (1)

Lại có ^BEN = 1800 - ^BON = 600 = ^CAB = ^BEC => Tia EN trùng tia EC hay N,E,C thẳng hàng

Từ đó ^CMN = ^BEC = 600 = ^CBA => MN // BK

Mà tứ giác BMNK nội tiếp (O') nên KN = BM = IM (Vì \(\Delta\)MBI cân tại M)  (2)

Từ (1) và (2) suy ra IM = KA (đpcm).

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN