Tìm giá trị nguyên x để đa thức f(x)=x^3-3x^2-3x-1 chia hết cho g(x)=x^2+x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


f(x) = x3 - 3x2 - 3x - 1 ⋮ x2 + x + 1
f(x) = x3 + x2 - 4x2 + x - 4x - 4 + 3 ⋮ x2 + x + 1
f(x) = ( x3 + x2 + x ) - ( 4x2 + 4x + 4 ) + 3 ⋮ x2 + x + 1
f(x) = x ( x2 + x + 1 ) - 4 ( x2 + x + 1 ) + 3 ⋮ x2 + x + 1
f(x) = ( x2 + x + 1 ) ( x - 4 ) + 3 ⋮ x2 + x + 1
Mà ( x2 + x + 1 ) ( x - 4 ) ⋮ x2 + x + 1
=> 3 ⋮ x2 + x + 1
=> x2 + x + 1 thuộc Ư(3) = { 1; 3; -1; -3 }
Tự thay vào rồi tìm x thôi bạn
VD :
x2 + x + 1 = 1
<=> x2 + x = 0
<=> x ( x + 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Xét tiếp 3 t/h còn lại nha bạn

Olm chào em, đây là dạng toán nâng cao chuyên đề phép chia đa thức, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
(\(x^3-3x^2-3x-1)\) ⋮ (\(x^2+x+1\))
[(\(x^3+x^2+x)\) - 4(\(x^2+x+1\)) + 3] ⋮ (\(x^2+x+1\))
3 ⋮ (\(x^2+x+1\))
\(\left(x^2+x+1\right)\inƯ\left(3\right)=\left\lbrace-3;-1;1;3\right\rbrace\)
\(x^2+x+1\) = (\(x+\frac12\))\(^2\) + \(\frac34\) ≥ \(\frac34\) ∀ \(x\)
⇒ (\(x^2+x+1)\) ∈ {1; 3}
TH1: \(x^2+x+1\) = 1
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{l}x=0\\ x+1=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-1\end{array}\right.\)
TH2: \(x^2+x+1\) = 3
\(x^2+x=2\)
\(x^2+x-2=0\)
(\(x^2-x\)) + (\(2x-2\)) = 0
\(x\left(x-1\right)\) + 2(\(x-1\)) = 0
(\(x-1\))(\(x+2)=0\)
\(\left[\begin{array}{l}x-1=0\\ x+2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=1\\ x=-2\end{array}\right.\)
Kết hợp 2 trường hợp ta có: \(x\in\) {-2; -1; 0; 1}

\(x^3-3x^2-3x-1=\left(x-4\right)\left(x^2+x+1\right)+3\)
\(\Rightarrow x^3-3x^2-3x-1\) chia hết \(x^2+x+1\) khi \(3⋮x^2+x+1\)
\(\Rightarrow x^2+x+1=Ư\left(3\right)\) (1)
Mà x nguyên dương \(\Rightarrow x^2+x+1\ge1^2+1+1=3\) (2)
(1);(2) \(\Rightarrow x^2+x+1=3\)
\(\Rightarrow x=1\)

Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !

x^3+3x-5 chia hết cho x^2+2
=>x^3+2x+x-5 chia hết cho x^2+2
=>x-5 chia hết cho x^2+2
=>x^2-25 chia hết cho x^2+2
=>x^2+2-27 chia hết cho x^2+2
=>x^2+2 thuộc Ư(-27)
=>x^2+2 thuộc {3;9;27}
=>\(x\in\left\{1;-1;5;-5\right\}\)

My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N