Xét sự tính chẵn lẻ của hàm số y= x^2020-2x^2-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(TXD\) \(D=R\backslash\left\{0\right\}\) là tập đối xứng.
\(\forall x\in D\Rightarrow-x\in D\)
Có \(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|2\left(-x\right)+1\right|+\left|2\left(-x\right)-1\right|}\)
\(=\dfrac{x^2+1}{\left|1-2x\right|+\left|-2x-1\right|}\)
\(=\dfrac{x^2+1}{\left|-\left(2x-1\right)\right|+\left|-\left(2x+1\right)\right|}\)
\(=\dfrac{x^2+1}{\left|2x-1\right|+\left|2x+1\right|}\) \(=f\left(x\right)\)
Vậy hàm số \(y=f\left(x\right)=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}\) là hàm số chẵn.
TXĐ: D=R
Khi \(x\in D\) thì \(-x\in D\)
\(f\left(-x\right)=\dfrac{\left(-x\right)^2+1}{\left|-2x+1\right|+\left|-2x-1\right|}\)
\(=\dfrac{x^2+1}{\left|2x+1\right|+\left|2x-1\right|}=f\left(x\right)\)
=>f(x) chẵn

Đồ thị là hình 26. Hàm số không là hàm số chẵn, không là hàm số lẻ

Đáp án D
Ta có tập xác định D = R.
Hàm số y = f(x) = 0 có:
f(-x) = 0 và –f(x) = 0
=> f(x) = f(-x) = -f(x) vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa
\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\) \
Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) = - \sin 2x - \tan 2x = - \left( {\sin 2x + \tan 2x} \right) = - f\left( x \right),\;\forall x \in D\).
Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ
b) Tập xác định của hàm số là \(D = \mathbb{R}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)
Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn
c) Tập xác định của hàm số là \(D = \mathbb{R}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) = - \sin x.\cos 2x = - f\left( x \right),\;\forall x \in D\)
Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ
d) Tập xác định của hàm số là \(D = \mathbb{R}\)
Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D
Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) = - \sin x + \cos x \ne f\left( x \right),\;\forall x \in D\)
Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ

\(f\left(-x\right)=\sqrt[3]{-x+2}-\sqrt[3]{-x-2}\)
\(=-\left(\sqrt[3]{x-2}-\sqrt[3]{x+2}\right)\)
=f(x)
Vậy: f(x) là hàm số chẵn

a, \(y=f\left(x\right)=2x^2+1\)
\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn
b, \(y=f\left(x\right)=5x^3-2x\)
\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ
c, \(y=f\left(x\right)=\sqrt{x-1}\)
ĐK: \(x\ge1\)
\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ
d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)
ĐK: \(x\ne0\)
\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)
\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)
\(\Rightarrow\) Không phải là hàm số chẵn, lẻ

b: \(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)
\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}\)
=-f(x)
Vậy: f(x) là hàm số lẻ
\(f\left(-x\right)=\left(-x\right)^{2020}-2\cdot\left(-x\right)^2-3\)
\(=x^{2020}-2x^2-3\)
=f(x)
=> f(x) là hàm số chẵn