K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó:MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)

hay BMNC là hình thang

b: Xét ΔOBC có 

I là trung điểm của OB

K là trung điểm của OC

Do đó: IK là đường trung bình của ΔOBC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra MN//IK và MN=IK

hay MNKI là hình bình hành

2 tháng 3 2016

câu 1 : vì MN là đường TB của tam giác ABC => MN // BC nên theo hệ quả định lí ta-lét , ta có :


\(\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)
=> tam giác ABC đồng dạng với tam giác AMN theo trường hợp cạnh cạnh cạnh

4 tháng 4 2016

trong tam giác ABM, ta có bất đẳng thức

MB<AB+AM

trong tam giác ACM, ta co bất đẳng thức

MC<AC+AM

từ 2 điều trên suy ra MB-MC<(AB+AM)-(AC+AM)

suy ra MB-MC<AB+AM-AC-AM

suy ra MB-MC<AB-AC(đfcm)

13 tháng 5 2020

Câu 1)

A )Ta có tam giác ABC cân tại A 

=> \(\widehat{ABC}=\widehat{ACB}\)

Và AB = AC

Xét hai tam giác vuông BCK và CBH ta có :

BC chung

\(\widehat{KBC}=\widehat{BCH}\)

=>BCK = CBH (cạnh huyền - góc nhọn )

=>BH = CK (đpcm)

B) ta có BCK = CBH

=> \(\widehat{HBC}=\widehat{KCB}\)

=> \(\widehat{ABH}=\widehat{ACK}\)

=> tam giác OBC cân tại O

=> BO = CO

Xét tam giác ABO và tam giác ACO 

AB = AC

BO = CO (cmt)

\(\widehat{ABH}=\widehat{ACK}\)

=> ABO=ACO (c-g-c)

=> \(\widehat{BAO}=\widehat{CAO}\)

=> AO là phân giác góc ABC (đpcm)

C) ta có

AI là phân giác góc ABC 

Mà tam giác ABC cân tại A

=> AI vuông góc với cạnh BC (đpcm)

4 tháng 4 2018

Ta có: \(\left(AC+BH\right)^2=AC^2+BH^2+2AC.BH\)

\(\left(AB+CK\right)^2=AB^2+CK^2+2AB.CK\)

Ta dễ thấy do AB < AC nên BH < CK

Vậy thì \(\left(AC+BH\right)^2-\left(AB+CK\right)^2=AC^2-CK^2-\left(AB^2-BH^2\right)\)

\(=AK^2-AH^2>0\)

\(\Rightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)

\(\Rightarrow AC+BH>AB+CK\)

\(\Rightarrow AC-AB>CK-BH\)