Cho tam giác ABC cân tại A, góc A = 45 độ, nội tiếp đường tròn (O;R). Tính các cạnh của tam giác ABC theo R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
có \(\widehat{AEH}=90\)
\(\widehat{AFH}\)=90
\(\widehat{AEH}+\widehat{AFH}=90+90=180\) tổng 2 góc đối nhau
⇒ tứ giác AEHF là tứ giác nội tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Vì AM và AN lần lượt là hai tia phân giác của hai góc trong và ngoài tại đỉnh A của ΔABC
nên AM và AN lần lượt là hai tia phân giác của hai góc kề bù
⇔\(\widehat{MAN}=90^0\)
Xét ΔAMN có \(\widehat{MAN}=90^0\)(cmt)
nên ΔAMN vuông tại A(Định nghĩa tam giác vuông)
Suy ra: A,M,N cùng nằm trên đường tròn đường kính NM(Định lí)
mà A,M,N cùng nằm trên (O)
nên MN là đường kính của đường tròn (O)
hay O,M,N thẳng hàng(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc CAD = 90 °