K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Bài giải

Ta có: \(\frac{5n-17}{4n-23}\)có giá trị lớn nhất (n \(\inℕ\))

Để \(\frac{5n-17}{4n-23}\)lớn nhất thì mẫu số 4n - 23 bé nhất và 5n - 17 khác 0 hay 4n - 23 khác 0

=> 4n - 23 = 1

     4n        = 1 + 23

     4n        = 24

       n        = 24 : 4

       n        = 6

Vậy n = 6

2 tháng 2 2020

Để 5n-17/4n-23 có giá trị lớn nhất thì 4n-23 bé nhất và 5n-17 khác 0

Giá trị nhỏ nhất của 4n-23 là 1

=>4n=24

=>n=6

15 tháng 4 2018

\(M=\frac{5n+17}{4n+13}=\frac{4n+13+n+4}{4n+13}=1+\frac{n+4}{4n+13}\)

Để M đạt GTLN thì \(\frac{n+4}{4n+13}\)Đạt GTLN \(\Rightarrow4n+13\) đạt GTNN dương

 Ta có :          \(4n+13=1\)

                  \(\Leftrightarrow4n=-12\)\(\Rightarrow n=-3\)

              Vậy M đạt GTLN = 2 khi n=-3

1 tháng 5 2015

\(A=\frac{5a-17}{4a-23}=\frac{\frac{5}{4}.\left(4a-23\right)+\frac{115}{4}-17}{4a-23}=\frac{5}{4}+\frac{47}{4.\left(4a-23\right)}\)

Để A lớn nhất thì \(\frac{1}{4a-23}\) là số dương lớn nhất => 4a - 23 là nhỏ nhất  mà  a là số tự nhiên => 4a - 23 =1 => a = 6

Vậy a = 6 thì A lớn nhất bằng \(\frac{5}{4}+\frac{47}{4}=\frac{52}{4}=13\) 

22 tháng 3 2017

hay lắm

7 tháng 4 2015

ta co de 5a-17/4a-23 lon nhat thi mau phai nho nhat => 4a-23=1 vi khong chia duoc cho so 0   khi do 4a=24 vay a=6

a: Để 8a+19/4a+1 là số nguyên thì \(8a+2+17⋮4a+1\)

\(\Leftrightarrow4a+1\inƯ\left(17\right)\)

\(\Leftrightarrow4a+1\in\left\{1;-1;17;-17\right\}\)

hay \(a\in\left\{0;4\right\}\)

b: Tham khảo: 

14 tháng 2

Để 8a+194a+14a+18a+19 có giá trị là số nguyên thì 8a+19⋮4a+18a+19⋮4a+1

Ta có:

8a+19⋮4a+18a+19⋮4a+1

⇒(8a+2)+17⋮4a+1⇒(8a+2)+17⋮4a+1

⇒2(4a+1)+17⋮4a+1⇒2(4a+1)+17⋮4a+1

⇒17⋮4a+1⇒17⋮4a+1

⇒4a+1∈{±1;±17}⇒4a+1∈{±1;±17}

+) 4a+1=1⇒a=04a+1=1⇒a=0 ( thỏa mãn )

+) 4a+1=−1⇒a=−124a+1=−1⇒a=2−1  ( không thỏa mãn )

+) 4a+1=17⇒a=44a+1=17⇒a=4 ( thỏa mãn )

+) 4a+1=−17⇒a=−924a+1=−17⇒a=2−9 ( không thỏa mãn )

Vậy a = 0 hoặc a = 4

b) Giải:

Để 5a−174a−234a−235a−17 có giá trị lớn nhất thì 5a−17⋮4a−235a−17⋮4a−23

Ta có:
5a−17⋮4a−235a−17⋮4a−23

⇒4(5a−17)⋮4a−23⇒4(5a−17)⋮4a−23

⇒20a−68⋮4a−23⇒20a−68⋮4a−23

⇒(20a−115)+47⋮4a−23⇒(20a−115)+47⋮4a−23

⇒5(4a−23)+47⋮4a−23⇒5(4a−23)+47⋮4a−23

⇒47⋮4a−23⇒47⋮4a−23

⇒4a−23∈{±1;±47}⇒4a−23∈{±1;±47}

+) 4a−23=1⇒a=64a−23=1⇒a=6 ( thỏa mãn )

+) 4a−23=−1⇒a=1124a−23=−1⇒a=211 ( không thỏa mãn )

+) 4a−23=47⇒a=3524a−23=47⇒a=235 ( không thỏa mãn )

+) 4a−23=−47⇒a=−64a−23=−47⇒a=−6 ( thỏa mãn )

Vì a có giá trị lớn nhất để 5a−174a−234a−235a−17 có giá trị lớn nhất nên a = 6

Vậy a = 6

8 tháng 9 2016

Giải:
Để \(\frac{8a+19}{4a+1}\) có giá trị là số nguyên thì \(8a+19⋮4a+1\)

Ta có:

\(8a+19⋮4a+1\)

\(\Rightarrow\left(8a+2\right)+17⋮4a+1\)

\(\Rightarrow2\left(4a+1\right)+17⋮4a+1\)

\(\Rightarrow17⋮4a+1\)

\(\Rightarrow4a+1\in\left\{\pm1;\pm17\right\}\)

+) \(4a+1=1\Rightarrow a=0\) ( thỏa mãn )

+) \(4a+1=-1\Rightarrow a=\frac{-1}{2}\)  ( không thỏa mãn )

+) \(4a+1=17\Rightarrow a=4\) ( thỏa mãn )

+) \(4a+1=-17\Rightarrow a=\frac{-9}{2}\) ( không thỏa mãn )

Vậy a = 0 hoặc a = 4

b) Giải:

Để \(\frac{5a-17}{4a-23}\) có giá trị lớn nhất thì \(5a-17⋮4a-23\)

Ta có:
\(5a-17⋮4a-23\)

\(\Rightarrow4\left(5a-17\right)⋮4a-23\)

\(\Rightarrow20a-68⋮4a-23\)

\(\Rightarrow\left(20a-115\right)+47⋮4a-23\)

\(\Rightarrow5\left(4a-23\right)+47⋮4a-23\)

\(\Rightarrow47⋮4a-23\)

\(\Rightarrow4a-23\in\left\{\pm1;\pm47\right\}\)

+) \(4a-23=1\Rightarrow a=6\) ( thỏa mãn )

+) \(4a-23=-1\Rightarrow a=\frac{11}{2}\) ( không thỏa mãn )

+) \(4a-23=47\Rightarrow a=\frac{35}{2}\) ( không thỏa mãn )

+) \(4a-23=-47\Rightarrow a=-6\) ( thỏa mãn )

Vì a có giá trị lớn nhất để \(\frac{5a-17}{4a-23}\) có giá trị lớn nhất nên a = 6

Vậy a = 6

 

 

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
4 tháng 4 2017

a. Ta tách \(\frac{8a+19}{4a+1}=\frac{\left(8a+2\right)+17}{4a+1}=2+\frac{17}{4a+1}\)

Để biểu thức trên có giá trị nguyên thì \(4a+1\inƯ\left(17\right)=\left\{-1;1;17;-17\right\}\)

Do a là số tự nhiên nên \(a\in\left\{0;4\right\}\)

b. Ta bổ sung là biểu thức có giá trị nguyên lớn nhất:

Gọi \(A=\frac{5a-17}{4a-23}\). A nguyên thì 4A cũng nguyên, hay \(\frac{20a-68}{4a-23}\in Z.\)

\(\frac{20a-68}{4a-23}=5+\frac{47}{4a-23}\)

Vậy thì \(4a-23\inƯ\left(47\right)=\left\{-1;1;47;-47\right\}\)

Do a là số tự nhiên nên \(a=6\)

Với a = 6, A = 13 là giá trị nguyên lớn nhất.

10 tháng 5 2018

a) \(\frac{8a+19}{4a+1}\)CÓ GIÁ TRỊ NGUYÊN 

\(\Rightarrow8a+19⋮4a+1\Rightarrow2\left(4a+1\right)+17⋮4a+1\)

\(\Rightarrow17⋮4a+1\Rightarrow4a+1\inƯ\left(17\right)=\left[\pm1;\pm17\right]\)

\(\Rightarrow\)\(4a+1=\)\(1\)\(\Rightarrow\)\(a\)\(=0\)(TM).

\(\Rightarrow\)\(4a+1=\)\(-1\)\(\Rightarrow\)\(a\)\(=\frac{-2}{4}\)(LOẠI).

\(\Rightarrow\)\(4a+1=\)\(17\)\(\Rightarrow\)\(a\)\(=6\)(TM).

\(\Rightarrow\)\(4a+1=\)\(-17\)\(\Rightarrow\)\(a\)\(=\frac{-9}{2}\)(LOẠI).

VẬY \(a\)\(=0\)HOẶC \(a=6\)