Trong mặt phẳng toạ độ Oxy cho A(-3;1), B(1;2), C(2;-4)
a, Xác định toạ độ điểm D sao cho ABCD là hình bình hành
b, Tính chu vi và diện tích của ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1); vecto u=2*vecto a-vecto b
=>\(\left\{{}\begin{matrix}x=2\cdot1-0=2\\y=2\cdot\left(-4\right)-2=-10\end{matrix}\right.\)
(2): vecto u=-2*vecto a+vecto b
=>\(\left\{{}\begin{matrix}x=-2\cdot\left(-7\right)+4=18\\y=-2\cdot3+1=-5\end{matrix}\right.\)
(3): vecto a=2*vecto u-5*vecto v
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\cdot\left(-5\right)-5\cdot0=-10\\b=2\cdot4-5\cdot\left(-3\right)=15+8=23\end{matrix}\right.\)
(4): vecto OM=(x;y)
2 vecto OA-5 vecto OB=(-18;37)
=>x=-18; y=37
=>x+y=19
\(\overrightarrow{u}=2.\overrightarrow{a}+\overrightarrow{b}=\left(-1.2+3;2.2-2\right)=\left(1;2\right)\)
Gọi tọa độ trực tâm H là \(H\left(x;y\right).\)
Vì H là trực tâm của △ ABC. \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AH}\perp\overrightarrow{BC.}\\\overrightarrow{BH}\perp\overrightarrow{AC.}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0.\\\overrightarrow{BH}.\overrightarrow{AC}=0.\end{matrix}\right.\)
Ta có: \(\overrightarrow{AH}=\left(x-2;y-4\right);\overrightarrow{BC}=\left(-1;-5\right).\)
\(\overrightarrow{BH}=\left(x+1;y-2\right);\overrightarrow{AC}=\left(-4;-7\right).\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(-1\right)+\left(y-4\right)\left(-5\right)=0.\\\left(x+1\right)\left(-4\right)+\left(y-2\right)\left(-7\right)=0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-x+2-5y+20=0.\\-4x-4-7y+14=0.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-5y=-22.\\-4x-7y=-10.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8.\\y=6.\end{matrix}\right.\) \(\Rightarrow H\left(-8;6\right).\)
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
a,
\(D\left(x;y\right)\rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;1\right)\\\overrightarrow{DC}=\left(2-x;-4-y\right)\end{matrix}\right.\)
\(\Rightarrow\) ABCD là hình bình hành
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\rightarrow\left(4;1\right)=\left(2-x;-4-y\right)\)
\(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
\(\rightarrow D=\left(-2;-5\right)\)
b. \(AB=CD=\sqrt{4^2+1^2=\sqrt{17}}\)
\(AD=BC=\sqrt{\left(2-1\right)^2+\left(-4-1\right)^2}=\sqrt{37}\)
\(\rightarrow P_{ABCD}=2\sqrt{17}+2\sqrt{37}\)
Gọi pt đường thẳng đi qua A và B là y=ax+b
Nên ta có hệ pt:
\(\left\{{}\begin{matrix}1=-3a+b\\2=a+b\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}a=\frac{1}{4}\\b=\frac{7}{4}\end{matrix}\right.\)
\(\rightarrow AB:y=\frac{1}{4}x+\frac{7}{4}hay:x-47+7=0\)
\(d_{D-AB}=\frac{|2-4.\left(-5\right)+7|}{\sqrt{1^2+\left(-4\right)^2}}=\frac{25}{\sqrt{17}}\)
\(S_{ABCD}=AB.d_{D-AB}=\sqrt{17}.\frac{25}{\sqrt{17}}=25\)