Cmr: tồn tại hay không số hữu tỉ x,y thoả mãn: \(x^2+y^2=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử tồn tại hai số hữu tỉ thỏa mãn đẳng thức :
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)\left(y+x\right)\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Mà x và y là hai số trái dấu => ( x + y )2 > 0 còn xy < 0
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)
mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)
chúc bạn học tốt
#)Giải :
Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6
Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)
\(\Rightarrow a^2=6b^2\)
\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)
Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)
Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Hoàng Uyên Minh - Toán lớp 7 - Học toán với OnlineMath