Xác định các hằng số a và b sao cho \(x^4+ax+b\)chia hết cho \(x^2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đây là phương pháp đồng nhất hạng tử (cách này hơi khó hiểu vì dành cho lớp chuyên toán hoặc đội tuyển)
sau khi lấy x4+ax+b chia cho x2-1 ta được x2+1 dư ax+b+1
ta có x4+ax+b = (x2-1)(x2+cx+d)
=>x4+ax+b=x4+cx3+dx2-x2-cx-d
Tương đương bậc của 2 bên ( ko cần ghi bậc chỉ cần ghi hệ số)
x4 =x4 => 0
0x3 =cx3 => c=0
0x2=(d-1)x2 => d-1 = 0 ( lấy x2 chung)
ax=-cx => a=-c
b=-d
Từ những điều trên ta kết luận
a=0 (a=-c mà c=0)
b=1 (b=-d mà d=1)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(f\left(x\right)=x^4+ax+b\)
Theo định lí bơ zu
\(\Rightarrow f\left(2\right)=16+2b+b=0\)
\(\Leftrightarrow2a+b=-16\) ( 1 )
\(\Rightarrow f\left(-2\right)=16-2a+b=0\)
\(\Leftrightarrow-2a+b=-16\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Leftrightarrow a=0;b=-16\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1
Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )
=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d
<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d
Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)
Vậy a = b = 1
x^4 +ax+b x^2+1 x^2-1 x^4-x^2 - x^2+ax+b x^2 -1 - ax+b+1
Để \(x^4+ax+b\)chia hết cho \(x^2-1\)
\(\Leftrightarrow ax+b+1=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}}\)
Vay ...
Đa thức \(x^2-1\)có nghiệm\(\Leftrightarrow x^2-1=0\Leftrightarrow x=\pm1\)
TH1: x = 1\(\Rightarrow1+a+b=0\Leftrightarrow a+b=-1\)
TH2: x = - 1\(\Rightarrow1-a+b=0\Leftrightarrow a-b=1\)
Có hệ\(\hept{\begin{cases}a+b=-1\\a-b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy a = 0; b = -1 thì \(x^4+ax+b\)chia hết cho đa thức x2 -1