Cho các số x, y, z\(\ge\)0 và x+ y+ z= 1. Chứng minh rằng: x+ 2y+ z\(\ge\)4(1-x)(1-y)(1-z).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
nx \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(y+z\right)\left(1-y\right)\left(1-z\right)\)
ap dung bdt \(\left(a+b\right)^2\ge4ab\) ta co \(4\left(y+z\right)\left(1-z\right)\left(1-y\right)\le\left(y+z+1-z\right)^2\left(1-y\right)=\left(y+1\right)^2\left(1-y\right)\) \(=\left(y+1\right)\left(y+1\right)\left(1-y\right)=\left(y+1\right)\left(1-y^2\right)\le y+1\) =\(y+x+y+z=x+2y+z\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)
\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)
\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
CMR a+2b+c >= 4(1-a)(1-b)(1-c) - Bất đẳng thức và cực trị - Diễn đàn Toán học
bạn có thể giải giúp mình bài toán nay ko. giúp mình nha
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)
\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)
BBDT AM-GM
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)
theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)
vì \(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)
\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)
\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)
dấu"=" xảy ra<=>x=y=z=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
ngu ngườingu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
ngu người
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
chó ngu
\(4\left(x+y\right)\left(y+z\right)\left(1-y\right)\le\left(x+2y+z\right)^2\left(1-y\right)\)
\(\le\frac{1}{4}\left(x+2y+z\right)\left(x+2y+z+1-y\right)^2=x+2y+z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=z=\frac{1}{2}\\y=0\end{cases}}\)