tmf các số tự nhiên x, y sao cho \(x^2+3^y=3026\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


*y=0=>x^2+1=3026=>x^2=3025 mà x là số tự nhiên=> x=55
*y>0 => 3^y chia hết cho 3 mà 3026 chia 3 dư 2=> x^2 chia 3 dư 2 (vô lý)
Vậy x=55,y=0
Bạn có thể đi cm Số chính phương(x^2) chia 3 du 0 hoặc 1

a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị

a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...

bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12

\(x-3=y\left(x+2\right)\)
\(\Leftrightarrow x+2-2-3=y\left(x+2\right)\)
\(\Leftrightarrow x+2-5=y\left(x+2\right)\)
\(\Leftrightarrow x+2-y\left(x+2\right)-5=0\)
\(\Leftrightarrow\left(x+2\right)\left(1-y\right)=5\)
Suy ra \(x+2,\) \(1-y\)là ước của 5.
Do x là các số tự nhiên nên x + 2 > 0 vì vậy 1 - y > 0.
mặt khác 1- y là ước của 5 và y là số tự nhiên nên \(1-y=1\)\(\Leftrightarrow y=0\).
Suy ra x = 3.
Vậy x = 3 , y = 0 là các giá trị cần tìm.
\(x-3=y.\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)-5=y.\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)-5-y.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(1-y\right)=5\)
Lập bảng là xong nha :D
MK lười:V hahhaaaa

Ta có: \(x-3=y\left(x+2\right)\Rightarrow x-3\ge x+2\) ( vô lý )
\(x-3=y\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\y\left(x+2\right)=0\Rightarrow y=0\end{cases}}\)
K pk nữa =.=
Ta có: \(x-3=y\left(x+2\right)\Rightarrow x-3\ge x+2\)
Đối với \(x,y\in N\) là vô lý
Vậy không tồn tại giá trị x,y là số tự nhiên
Có: \(3026\equiv2\left(mod3\right)\)
Do đó: \(x^2\equiv2\left(mod3\right)\)
Mặt khác số chính phương chia 3 không dư 2
Vậy không có x,y thỏa .....
xét y=0 ta có x^2+1=3026
=>x=55
xét y>0 ta có như bạn lê nhật khôi