Cho \(f\left(x\right)=x^3\)Tính A =\(f\left(n+1\right)+f\left(-n\right)\) với n thuộc N ;\(1\le n\le100\)
A.1030300 B.1030302 C.1030303 D.1030301
Giúp mình với mọi người ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Chỉ là thay số nên bạn tự làm nhé.
b) \(y_1=1\), \(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\), \(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.
Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\), \(k\)chẵn thì \(y_k=0\)(1).
Khi đó ta có:
\(A=y_1+y_2+...+y_{2021}\)
\(A=1+0+1+...+1\)
\(A=\frac{2021-1}{2}+1=1011\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(-x\right)=\left|-sinx-cosx\right|-\left|-sinx+cosx\right|\)
\(=\left|sinx+cosx\right|-\left|sinx-cosx\right|=-f\left(x\right)\)
\(\Rightarrow f\left(x\right)+f\left(-x\right)=0\)
\(\Rightarrow T=f\left(-\pi\right)+f\left(\pi\right)+f\left(-\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(\frac{\pi}{n}\right)+f\left(0\right)\)
\(=0+0+...+0+f\left(0\right)=f\left(0\right)\)
\(=1-1=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=4x\) ; \(g\left(x\right)=x^2\) \(\Rightarrow f\left(n\right)=4n\) ; \(g\left(n\right)=n^2\)
\(f\left(1\right)+f\left(2\right)+...+f\left(n\right)=4\left(1+2+...+n\right)=\frac{4n\left(n+1\right)}{2}\)
\(=\frac{4n^2+4n}{2}=\frac{4g\left(n\right)+f\left(n\right)}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(20\right)=f\left(1\right)+f\left(19\right)+3\left(4.1.19-1\right)=f\left(19\right)+12.19-3\)
\(f\left(19\right)=f\left(18\right)+12.18-3\)
\(f\left(18\right)=f\left(17\right)+12.17-3\)
.....
\(f\left(3\right)=f\left(2\right)+12.2-3\)
\(f\left(2\right)=f\left(1\right)+12-3\)
Cộng vế theo vế các đẳng thức trên:
\(f\left(2\right)+f\left(3\right)+...+f\left(20\right)=f\left(1\right)+f\left(2\right)+...+f\left(19\right)+12\left(1+2+...+19\right)-3.20\)
\(\Leftrightarrow f\left(20\right)=2220\)
Đoạn này bạn tính kĩ một chút nha, mình tính không biết có sai không.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx\le2\int\limits^1_0\sqrt{f'\left(x\right)}f\left(x\right)dx\) (1)
Ta lại có:
\(3f'\left(x\right).f^2\left(x\right)+\frac{1}{3}\ge2\sqrt{f'\left(x\right)}.f\left(x\right)\)
\(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]\ge2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\) (2)
Từ (1); (2) \(\Rightarrow3\int\limits^1_0\left[f'\left(x\right).f^2\left(x\right)+\frac{1}{9}\right]dx=2\int\limits^1_0\sqrt{f'\left(x\right)}.f\left(x\right)dx\)
Dấu "=" xảy ra khi và chỉ khi:
\(3f'\left(x\right).f^2\left(x\right)=\frac{1}{3}\Rightarrow3\int f'\left(x\right).f^2\left(x\right)dx=\int\frac{1}{3}dx\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+C\)
Thay \(x=0\Rightarrow f^3\left(0\right)=C\Rightarrow C=1\)
\(\Rightarrow f^3\left(x\right)=\frac{x}{3}+1\Rightarrow\int\limits^1_0f^3\left(x\right)dx=\int\limits^1_0\left(\frac{x}{3}+1\right)dx=\frac{7}{6}\)