K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)

\(\Rightarrow n+6+1=17\Rightarrow n=10\)

6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)

\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)

7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)

\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)

9 tháng 7 2023

a) (x² + 2)²

= (x²)² + 2.x².2 + 2²

= x⁴ + 4x² + 4

b) (x + y + z)²

= [(x + y) + z]²

= (x + y)² + 2(x + y).z + z²

= x² + 2xy + y² + 2xz + 2yz + z²

= x² + y² + z² + 2xy + 2xz + 2yz

11 tháng 10 2021

a) \(=x^3+27-54-x^3=-27\)

b) \(=8x^3+y^3\)

17 tháng 7 2021

\(1,=-\left(y^2+12y+36\right)=-y^2-12y-36\)

\(2,=-\left(16-8y+y^2\right)=-16+8y-y^2\)

\(3,=-\left(\dfrac{4}{9}+\dfrac{4}{3}x+x^2\right)=-\dfrac{4}{9}-\dfrac{4}{3}x-x^2\)

\(4,=-\left(x^2-3x+\dfrac{9}{4}\right)=-x^2+3x-\dfrac{9}{4}\)

\(5,-\left(2+3y\right)^2=-\left(4+12y+9y^2\right)=-4-12y-9y^2\)

.... mấy ý còn lại bn tự lm nhé, tương tự thhooi

1) \(-\left(y+6\right)^2=-y^2-12y-36\)

2) \(-\left(4-y\right)^2=-y^2+8y-16\)

3) \(-\left(x+\dfrac{2}{3}\right)^2=-x^2-\dfrac{4}{3}x-\dfrac{4}{9}\)

4) \(-\left(x-\dfrac{3}{2}\right)^2=-x^2+3x-\dfrac{9}{4}\)

5) \(-\left(3y+2\right)^2=-9y^2-12y-4\)

6) \(-\left(2y-3\right)^2=-4y^2+12y-9\)

7) \(-\left(5x+2y\right)^2=-25x^2-20xy-4y^2\)

8) \(-\left(2x-\dfrac{3}{2}\right)^2=-4x^2+6x-\dfrac{9}{4}\)

20 tháng 8 2023

a) (x - 1/2x²y)²

= x² - 2x . 1/2 x²y + (1/2x²y)²

= x² - x³y + 1/4 x⁴y²

b) (2xy² - 1)(1 + 2xy²)

= (2xy²)² - 1²

= 4x²y⁴ - 1

c) (x - y + 2)²

= (x - y)² + 2(x - y).2 + 2²

= x² - 2xy + y² + 4x - 4y + 4

= x² + y² - 2xy + 4x - 4y + 4

d) (x + 1/2)(1/2 - x)

= (1/2)² - x²

= 1/4 - x²

e) (x² - 1/3)²

= (x²)² - 2x².1/3 + (1/3)²

= x⁴ - 2/3 x² + 1/9

18 tháng 7 2021

1, \(x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)

2, đề sai 

3, \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

4, \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

5, \(1000-y^3=\left(10-y\right)=\left(100+10y+y^2\right)\)

tương tự ... 

8, \(8x^3+27y^3=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

18 tháng 7 2021

Câu 2 đề ko sai nha bạn.

2) x2 - (\(\sqrt{y^3}\))2      ( y>0)   

= ( x -\(\sqrt{y^3}\)) ( x +\(\sqrt{y^3}\))

NV
5 tháng 11 2019

\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)

Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)

\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)

\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)

Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)

\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)

\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)

Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)

Hệ số: \(C_6^42^4\left(-1\right)^2=240\)