CMR nếu a,b,c là 3 cạnh của 1 tam giác và \(a\le b\le c\) thì \(\left(a+b+c\right)^2\le9bc\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta sẽ chứng minh bằng biến đổi tương đương như sau :
Ta có : \(\left(x^{10}+y^{10}\right)\left(x^2+y^2\right)\ge\left(x^8+y^8\right)\left(x^4+y^4\right)\left(1\right)\)
\(\Leftrightarrow x^{12}+x^{10}y^2+y^{10}x^2+y^{12}\ge x^{12}+x^8y^4+y^8x^4+y^{12}\)
\(\Leftrightarrow x^{10}y^2+y^{10}x^2\ge x^8y^4+y^8x^4\)
\(\Leftrightarrow x^2y^2\left(x^8+y^8-x^6y^2-x^2y^6\right)\ge0\)
\(\Leftrightarrow x^2y^2\left[\left(x^8-x^6y^2\right)+\left(y^8-x^2y^6\right)\right]\ge0\)
\(\Leftrightarrow x^2y^2\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow x^2y^2\left(x^3-y^3\right)\left(x^3+y^3\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow x^2y^2\left(x-y\right)^2\left(x+y\right)^2\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\ge0\)(2)
Ta thấy : \(x^2-xy+y^2=\frac{\left(x^2-2xy+y^2\right)+x^2+y^2}{2}=\frac{\left(x-y\right)^2+x^2+y^2}{2}\ge0\)
\(x^2+xy+y^2=\frac{\left(x+y\right)^2+x^2+y^2}{2}\ge0\) ; \(x^2y^2\left(x-y\right)^2\left(x+y\right)^2\ge0\)
Do đó (2) luôn đúng.
Vậy (1) được chứng minh.
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a: ta có:
(x+y)=(x-y)=x(x-y)+y(x-y)
=x2 - xy +yx - y2
=(-xy+yx) + x2 - y2 = x2 - y2
Vậy x2 - y2 = (x+y) (x-y)
còn câu b mình hông bik=)))))
\(^{x^2-y^2=x^2+xy-y^2-xy=x\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-y\right)..}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ Ta có: \(\left(a+b-c\right)\left(b-c\right)\le0\)
\(\Leftrightarrow c^2+b^2-ac+ab\le2bc\)
Ta lại có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\le a^2+4bc+3ac+ab\)
Giờ ta cần chứng minh:
\(a^2+4bc+3ac+ab\le9bc\)
\(\Leftrightarrow a^2+3ac+ab\le5bc\)
Cái này là đúng vì a, b, c là 3 cạnh của tam giác và \(a\le b\le c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2) Ta có: Áp dụng bất đẳng thức:
\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)
Tương tự chứng minh được:
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
Nhân vế 3 bất đẳng thức trên với nhau ta được:
\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Dấu "=" xảy ra khi: \(a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu - nhi - a ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
\(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
\(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
\(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.