phân tích đa thức thành nhân tử:4a2b+4ab2+2b2c+bc2+2a2c+c2a+4abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 8a3 + 4a2b - 2ab2 – b3 = (8a3 – b3 ) + (4a2b - 2ab2 )
= (2a – b)(4a2 + 2ab + b2) + 2ab(2a – b)
= (2a – b)( 4a2 + 2ab + b2 + 2ab) = (2a – b)(2a + b)2
=2ab.[a+2b]+c^2.[a+2b]- c.[a^2+4ab+4.b^2]
=.................................-c[a+2b]^2
=[a+2b].{2ab+c^2-ca-2bc]
=[a+2b]{ 2b.[a-c]-c.[a-c] }
=[a+2b].[a-c].[2b-c]
Để phân tích đa thức sau thành nhân tử:
\(a \left(\right. b - c \left.\right)^{2} + b \left(\right. c - a \left.\right)^{2} + c \left(\right. a - b \left.\right)^{2} - a^{3} - b^{3} - c^{3} + 4 a b c\)
Chúng ta bắt đầu bằng cách mở rộng các bình phương trong đa thức:
\(\left(\right. b - c \left.\right)^{2} = b^{2} - 2 b c + c^{2}\)\(\left(\right. c - a \left.\right)^{2} = c^{2} - 2 a c + a^{2}\)\(\left(\right. a - b \left.\right)^{2} = a^{2} - 2 a b + b^{2}\)
Thay các biểu thức này vào đa thức ban đầu:
\(a \left(\right. b - c \left.\right)^{2} + b \left(\right. c - a \left.\right)^{2} + c \left(\right. a - b \left.\right)^{2} = a \left(\right. b^{2} - 2 b c + c^{2} \left.\right) + b \left(\right. c^{2} - 2 a c + a^{2} \left.\right) + c \left(\right. a^{2} - 2 a b + b^{2} \left.\right)\)
Mở rộng từng phần:
\(= a b^{2} - 2 a b c + a c^{2} + b c^{2} - 2 a b c + b a^{2} + c a^{2} - 2 a b c + c b^{2}\)
Kết hợp các hạng tử lại:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 6 a b c\)
Bây giờ, cộng thêm các hạng tử còn lại trong đa thức gốc:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 6 a b c - a^{3} - b^{3} - c^{3} + 4 a b c\)
Ta tiếp tục gộp các hạng tử giống nhau:
\(= a b^{2} + a c^{2} + b c^{2} + b a^{2} + c a^{2} + c b^{2} - 2 a b c - a^{3} - b^{3} - c^{3}\)
Tiếp theo, chúng ta thấy rằng các hạng tử này có thể nhóm lại và có thể thấy rằng đây là một dạng biểu thức có thể được rút gọn hoặc có thể phân tích thêm theo các cách đặc biệt, như sử dụng các công thức đặc biệt trong đại số.
Tuy nhiên, việc phân tích đa thức này hoàn toàn thành nhân tử đơn giản rất khó khăn mà không sử dụng các công thức hoặc phương pháp phức tạp hơn (ví dụ, phân tích theo nhóm hoặc sử dụng máy tính đại số).
Do đó, kết quả cuối cùng của đa thức này là dạng rút gọn.
(b+a)(c+2a)(c+2b)