chứng minh rằng \(a^3+b^3+c^3\)chia hết cho 9 thì 1 trong 3 ố a,b,c phải chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử trong ba số a,b,c không có số nào chia hết cho 3
Khi đó \(a=3k\pm1\left(k\in Z\right)\)
\(b=3l\pm1\left(l\in Z\right)\)
\(c=3m\pm1\left(m\in Z\right)\)
\(\Rightarrow a^3\)chia 9 dư 1 hoặc -1
\(b^3\)chia 9 dư 1 hoặc -1
\(c^3\)chia 9 dư 1 hoặc -1
TH1: Nếu a chia hết cho 9 dư 1; b chia 9 dư 1; c chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 3( vô lý )
TH2: Nếu \(a^3\)chia 9 dư 1 ; \(b^3\)chia 9 dư 1 ; \(c^3\)chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 1( vô lý )
TH3: Nếu \(a^3\)chia 9 dư 1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -1( vô lý )
TH4: Nếu \(a^3\)chia 9 dư -1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -3 ( vô lý )
Vì a,b,c vai trò như nhau nên điều giả sử sai
Vậy luôn tồn tại 1 trong 3 số chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(10^{10}\) không chia hết cho 9; \(10^9\) không chia hết cho 3, bạn xem lại đề
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
73=343 đồng dư với 1(mod 9)
=>(73)6=718 đồng dư với 1(mod 9)
=>718=9k+1
=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9
=>đpcm
theo mk thì cần thêm đk nữa là a;b;c thuộc Z