Cho AB là dây cung của (O;R) và I là trung điểm của AB (O không thuộc AB)
a) Chứng minh OI vuông góc AB
b) Qua I vẽ dây cung EF. Chứng minh EF>AB. Tìm độ dài lớn nhất, độ dài nhỏ nhất của các dây quay quanh I.
c) Cho R=5cm, OI=4cm, tính độ dài dây cung ngắn nhất qua I.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xét ΔAMO vuông tại M có
\(OA^2=AM^2+OM^2\)
\(\Leftrightarrow AM=12\left(cm\right)\)
hay AB=24(cm)

vẽ OK vuông góc với AB ta có AK=KB= \(\frac{R\sqrt{3}}{2}\)
áp dụng hệ thức lượng trong tam giác vuông KBO ta có :
\(sin\widehat{KOB}=\frac{KB}{OB}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{KOB}=60^0\)
Tương tự ta có :\(\widehat{AOK}=60^0\)
gọi sđ cung AnB là số đo cung AB nhỏ .
gọi sđ cung AmB là số đo cung AB lớn .
\(\Rightarrow\widehat{AOB}=120^0\Rightarrow sđAnB=120^0\)
mà \(sđAnB+sđAmB=360^0\)
\(\Rightarrow sđAmB=240^0\)
ta có \(\widehat{AMB}=\frac{sđAmB}{2}=\frac{240^0}{2}=120^0\)

Theo quan hệ giữa đường kính và dây cung, do \(OI\perp AB\) tại I \(\Rightarrow AI=BI\)
\(\Rightarrow OI\) là trung trực của AB hay OM là trung trực của AB
\(\Rightarrow MA=MB\)
\(\Rightarrow\stackrel\frown{MA}=\stackrel\frown{MB}\)

Do I là trung điểm AB \(\Rightarrow OI\perp AB\)
\(AI=\dfrac{1}{2}AB=3\)
Trong tam giác vuông OAI, áp dụng Pitago:
\(OI=\sqrt{OA^2-AI^2}=\sqrt{R^2-AI^2}=4\)
\(\Rightarrow IM=OM-OI=R-OI=1\)
\(\Rightarrow AM=\sqrt{AI^2+IM^2}=\sqrt{10}\left(cm\right)\)
b.
Vẫn như trên, ta có: \(AI=\dfrac{1}{2}AB=6\)
Do MN là đường kính \(\Rightarrow\Delta MAN\) vuông tại A
Áp dụng hệ thức lượng trong tam giác vuông MAN với đường cao AI:
\(\dfrac{1}{AI^2}=\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\Rightarrow\dfrac{1}{6^2}=\dfrac{1}{10^2}+\dfrac{1}{AM^2}\Rightarrow AM=\dfrac{15}{2}\)
Áp dụng hệ thức lượng:
\(AI.MN=AN.AM\Leftrightarrow MN=\dfrac{AM.AN}{AI}=\dfrac{25}{2}\)
\(\Rightarrow R=\dfrac{MN}{2}=\dfrac{25}{4}\left(cm\right)\)