Tìm số tự nhiên n để \(2^n+9\)là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)


Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n

Bài 3
A = 1.2.3...n + 2024
Nếu n = 1 thì A = 1 + 2024
A = 2025
A = \(45^2\) (thỏa mãn)
Nếu n = 2 thì A = 1.2 + 2024
A = 2 + 2024
A = 2026
2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4
Nếu n ≥ 3 thì A = 1.2.3..n + 2024
1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2
⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)
Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.
