Phân tích đa thức thành các nhân tử
\(y\left(x+y\right)-x-y\)
Giúp Ken vs ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: x - y = a ; 3x + y - z = b ; -4x + z = c
Ta có: a + b + c = x - y + 3x + y - z - 4x + z = 0
Khi đó: \(\left(x-y\right)^3+\left(3x+y-z\right)^3+\left(-4x+z\right)^3\)
= \(a^3+b^3+c^3\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)
= \(0.\left(a^2+b^2+c^2-ab-bc+ac\right)+3abc\)
= \(3abc\)
= \(3\left(x-y\right)\left(3x+y-z\right)\left(-4x+z\right)\)
\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
~ Chúc bạn học tốt~
a, \(x^3-2x-y^3+2y\) (sửa đề)
\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)
b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)
\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)
\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4z\right)\)
Bạn xem lại đề câu a giúp mình nha!
\(\left(x+y+z\right)^5-x^5-y^5-z^5\)
Xét phương trình: \(\left(x+y+z\right)^5-x^5-y^5-z^5=0\)
Có nghiệm: \(x=-y;x=-z;y=-z\)
Hệ số của mũ là: 5
\(\Rightarrow\left(x+y+z\right)^5-x^5-y^5-z^5\)
\(=5\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(x^2+y^2+z^2+xy+yz+xz\right)\)
Hok Tốt!!!
\(xy\left(x-y\right)-xz\left(x+z\right)+yz\left(2x-y+z\right)\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left[\left(x-y\right)+\left(x+z\right)\right]\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y\right)+yz\left(x+z\right)\)
\(=\left(x-y\right)\left(xy+yz\right)+\left(x+z\right)\left(yz-xz\right)\)
\(=y\left(x-y\right)\left(x+z\right)-z\left(x+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+z\right)\left(y-z\right)\)
\(-x-y^2+x^2-y=-\left(x+y\right)-\left(x-y\right)\left(x+y\right)=\left(x+y\right)\left(-1-x+y\right)\)
\(y\left(x+y\right)-x-y=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
y.( x + y ) - x - y
= y.( x + y ) - ( x + y )
= ( x + y ).( y - 1 )