Cho ab=455^12. Tìm số dư khi chia a+b cho 4
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
LT
0

LT
3

VN
0

NB
1
TT
1

10 tháng 10 2017
a, A : 6 dư 1
b, A : 12 dư 7
c, A : 18 dư 1
Sai thì thôi nhé!!!
NX: \(455^{12}\equiv1\left(mod4\right)\)
\(\Rightarrow ab\equiv1\left(mod4\right)\)nên đặt \(a=4k+m,b=4h+n\left(k,h\in N:m,n\in[0,1,2,3]\right)\)
\(\Rightarrow mn\equiv1\left(mod4\right)\)
\(\Rightarrow\orbr{\begin{cases}m=n=1\\m=n=3\end{cases}}\)\(\Rightarrow m+n\equiv2\left(mod4\right)\)
Vậy ab chia 4 dư 2