1+1=
1x2=
so sánh 1+1 và 1x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\)
Vậy \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}< 1\left(đpcm\right)\)
1/1.2+1/2.3+1/3.4+...+1/59.60
=1-1/2+1/2-1/3+1/3-1/4+...+1/59-1/60
=1-1/60
=59/60
vì 1>59/60
=> 1>1/1.2+1/2.3+1/3.4+...+1/59.60
chúc bạn học tốt nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}=\frac{59}{60}\)
Câu 1: So sánh Biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) 3(a+1)(a+2) Bước 1: Rút gọn biểu thức 1: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) − 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) (a+1)(a+2)(a+3)−a(a+1)(a+2) Ta có thể khai triển từng phần: ( 𝑎 + 1 ) ( 𝑎 + 2 ) ( 𝑎 + 3 ) = ( 𝑎 + 1 ) ( 𝑎 2 + 5 𝑎 + 6 ) = 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 (a+1)(a+2)(a+3)=(a+1)(a 2 +5a+6)=a 3 +6a 2 +11a+6 𝑎 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 𝑎 ( 𝑎 2 + 3 𝑎 + 2 ) = 𝑎 3 + 3 𝑎 2 + 2 𝑎 a(a+1)(a+2)=a(a 2 +3a+2)=a 3 +3a 2 +2a Vậy biểu thức 1 trở thành: ( 𝑎 3 + 6 𝑎 2 + 11 𝑎 + 6 ) − ( 𝑎 3 + 3 𝑎 2 + 2 𝑎 ) = 3 𝑎 2 + 9 𝑎 + 6 (a 3 +6a 2 +11a+6)−(a 3 +3a 2 +2a)=3a 2 +9a+6 Biểu thức 2: 3 ( 𝑎 + 1 ) ( 𝑎 + 2 ) = 3 ( 𝑎 2 + 3 𝑎 + 2 ) = 3 𝑎 2 + 9 𝑎 + 6 3(a+1)(a+2)=3(a 2 +3a+2)=3a 2 +9a+6 Như vậy, biểu thức 1 và biểu thức 2 đều có giá trị bằng nhau. Do đó, cả hai biểu thức bằng nhau. Câu 2: Tính M Biểu thức: 𝑀 = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 2002 × 2003 M=1×2+2×3+3×4+⋯+2002×2003 Bước 1: Viết lại tổng: 𝑀 = ∑ 𝑘 = 1 2002 𝑘 ( 𝑘 + 1 ) M= k=1 ∑ 2002 k(k+1) Bước 2: Rút gọn 𝑘 ( 𝑘 + 1 ) k(k+1): 𝑘 ( 𝑘 + 1 ) = 𝑘 2 + 𝑘 k(k+1)=k 2 +k Do đó: 𝑀 = ∑ 𝑘 = 1 2002 ( 𝑘 2 + 𝑘 ) = ∑ 𝑘 = 1 2002 𝑘 2 + ∑ 𝑘 = 1 2002 𝑘 M= k=1 ∑ 2002 (k 2 +k)= k=1 ∑ 2002 k 2 + k=1 ∑ 2002 k Bước 3: Tính từng tổng: Tổng ∑ 𝑘 = 1 2002 𝑘 2 ∑ k=1 2002 k 2 là tổng bình phương của các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 2 = 𝑛 ( 𝑛 + 1 ) ( 2 𝑛 + 1 ) 6 k=1 ∑ n k 2 = 6 n(n+1)(2n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 2 = 2002 ( 2002 + 1 ) ( 2 × 2002 + 1 ) 6 = 2002 × 2003 × 4005 6 k=1 ∑ 2002 k 2 = 6 2002(2002+1)(2×2002+1) = 6 2002×2003×4005 Tổng ∑ 𝑘 = 1 2002 𝑘 ∑ k=1 2002 k là tổng các số tự nhiên, có công thức: ∑ 𝑘 = 1 𝑛 𝑘 = 𝑛 ( 𝑛 + 1 ) 2 k=1 ∑ n k= 2 n(n+1) Áp dụng với 𝑛 = 2002 n=2002: ∑ 𝑘 = 1 2002 𝑘 = 2002 ( 2002 + 1 ) 2 = 2002 × 2003 2 k=1 ∑ 2002 k= 2 2002(2002+1) = 2 2002×2003 Bước 4: Tính tổng 𝑀 M: 𝑀 = 2002 × 2003 × 4005 6 + 2002 × 2003 2 M= 6 2002×2003×4005 + 2 2002×2003 Rút gọn biểu thức: 𝑀 = 2002 × 2003 ( 4005 6 + 1 2 ) M=2002×2003( 6 4005 + 2 1 ) Tính phần trong dấu ngoặc: 4005 6 + 1 2 = 4005 + 3 6 = 4008 6 = 668 6 4005 + 2 1 = 6 4005+3 = 6 4008 =668 Vậy: 𝑀 = 2002 × 2003 × 668 M=2002×2003×668 Đây là kết quả của phép tính 𝑀 M.
Câu 1 bị sai đề bài.
Câu 2:
\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)
\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}+\frac{1}{2011}\)
Vì:
\(\frac{1}{2011}>\frac{1}{2012};\frac{1}{2011}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}>0\)
\(\Rightarrow\)\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
1+1=2
1x2=2
=>1+1=1x2
1 + 1 = 2
1 x 2 = 2
Ta có: 2 = 2
=> 1 + 1 = 1 x 2