Cho a,b là bình phương của 2 số lẻ liên tiếp . Chứng minh ab-a-+1 chia hết cho48
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)
\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)
\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp
Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48
Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2
\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)
Ta thấy \(B⋮2;B⋮8\)
(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)
\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)
\(\Rightarrow A⋮48\)

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)

Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8

Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8

a) Theo đề : => a + b + c = 1 + 2 + 4 = 7 là số lẻ
b) Không CMR được vì không có nhân hay chia cộng hay trừ j hết
Khi a = 1;b = 2;c = 4 suy ra 1+2+4=7 vậy nó là số lẻ
Gọi 3 số lẻ liên tiếp là:a+1;a+3;a+5
Theo đề ta có
a+1+a+3+a+5
=a+(1+3+5)
=a+9=>chia hết cho 9

Ta có ab-a-b+1=(a-1)(b-1)
Vì a,b là bình phương của 2 số lẻ liên tiếp nên ta có \(a=\left(2k+1\right)^2b=\left(2k+3\right)^2\)
\(\Rightarrow ab-a-b+1=2k\left(2k+2\right)^2\left(2k+4\right)\)
\(=16k\left(k+1\right)^2\left(k+2\right)⋮16\)
Vì \(k\left(k+1\right)^2\left(k+2\right)⋮3\)mà (3,16)=1 nên
\(ab-a-b+1⋮3.16=48\)
Chứng minh gì z bạn?????