K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

J
28 tháng 4 2019

có sai nếu là pt trình này chắc sẽ khó tìm ngiệm và ko áp dụng đc vi ét vì ko phải pt bậc hai

mk nghĩ đề phải là \(x^2+2\left(m+1\right)x-4m=0\)

28 tháng 4 2019

Mk cx nghĩ thế, mà giải pt bạn ghi ở trên cx khó với lâu lắm, nãy mk giải thử rồi

a) Thay m=-2 vào phương trình, ta được:

\(x^2-\left(-x\right)-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

a=1; b=1; c=-2

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)

Δ=(2m-2)^2-4(m^2+m-2)

=4m^2-8m+4-4m^2-4m+8

=-12m+12

Để phương trình có hai nghiệm thì -12m+12>=0

=>m<=1

x1^2=6-x2^2-x1x2

=>(x1+x2)^2-2x1x2+x1x2=6

=>(x1+x2)^2-x1x2=6

=>(2m-2)^2-2(m^2+m-2)-6=0

=>4m^2-8m+4-2m^2-2m+4-6=0

=>2m^2-10m+2=0

=>\(m=\dfrac{5\pm\sqrt{21}}{2}\)

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

11 tháng 7 2021

undefined

11 tháng 7 2021

a) Với m = -3 phương trình trở thành

\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)

b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)

\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)

Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)

Ta có : 

\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)

23 tháng 4 2023

\(x^2-2\left(m+1\right)x+4m-3=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_`+x_2=-\dfrac{b}{a}=2\left(m+1\right)=2m+2\\x_1x_2=\dfrac{c}{a}=4m-3\end{matrix}\right.\)

Ta có :

\(x_1^2x_2+x_1x_2^2=4\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)-4=0\)

\(\Leftrightarrow\left(4m-3\right)\left(2m+2\right)-4=0\)

\(\Leftrightarrow8m^2+8m-6m-6-4=0\)

\(\Leftrightarrow8m^2+2m-10=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{5}{4}\end{matrix}\right.\)

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

25 tháng 2 2022

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

20 tháng 1 2023

\(x^2+3x+m-1=0\left(1\right)\)

Thay \(m=3\) vào \(\left(1\right)\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+x+2x+2=0\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)

20 tháng 1 2023

câu a) dễ rồi ai chả bt làm, Mik cần câu b)

 

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

NV
29 tháng 3 2023

\(ac=-12< 0\) nên pt luôn có 2 nghiệm pb trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-12\end{matrix}\right.\)

\(x_1^2-x_2^2-14\left(m+1\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-14\left(m+1\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).2\left(m+1\right)-14\left(m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-1\\x_1-x_2=7\left(1\right)\end{matrix}\right.\)

Xét (1), kết hợp với Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1-x_2=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+9}{2}\\x_2=\dfrac{2m-5}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-12\Leftrightarrow\left(\dfrac{2m+9}{2}\right)\left(\dfrac{2m-5}{2}\right)=-12\)

\(\Leftrightarrow4m^2+8m+3=0\Rightarrow\left[{}\begin{matrix}m=-\dfrac{3}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(m=\left\{-1;-\dfrac{3}{2};-\dfrac{1}{2}\right\}\)