so sánh:202 với 82
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(M=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{299}+\frac{1}{300}\)
\(\Rightarrow\)Có 100 phân số
Ta có: \(\frac{1}{201}>\frac{1}{300}\)
\(\frac{1}{202}>\frac{1}{300}\)
...................
\(\frac{1}{299}>\frac{1}{300}\)
\(\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow M>\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)=\frac{100}{300}=\frac{1}{3}\)
Vậy....

em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)

`@` `\text {Ans}`
`\downarrow`
\(202^{303}\text{ và }303^{202}\)
Ta có:
\(202^{303}=202^{3\cdot101}=\left(202^3\right)^{101}\)
\(303^{202}=303^{101\cdot2}=\left(303^2\right)^{101}\)
So sánh `202^3` và `303^2`, ta có:
`202^3 = (2*101)^3 = 2^3 * 101^3 = 8 * 101^3 = 8* 101^2 * 101 = 808*101^2`
`303^2 = (3*101)^2 = 3^2 * 101^2 = 9 * 101^2`
Vì `9 < 808 \Rightarrow 9*101^2 < 808*101^2`
`\Rightarrow`\(202^{303}>303^{202}\)
Vậy, \(202^{303}>303^{202}.\)

8(%7#2;3786(23#;8%7;23#?3#](?;32%78(23;%(3*2;]34((46(;13846(1;58]63#;?%]3;?85?;3]%68%63(#8%,8632;6%]3;6?%8%,3]?8%23#;8%3#2;%68((14?+^#]?&$%3]3#;(+3]4}](#^&?+(:^?%+(},]?%]}^^?,}#]?,#6?*6*3,#3,](6,(6,3]?73%,]7?%]83#?87%3#,?7%,]?7%3#],?%+78)76}#,^*],)#+/(#})(#]}]7?3#68]7}#(])}7+)](^]74(3+)(+7/4?}(*@?/3#?7^{%79{}7^?#/})7},#(7?:%#?:%*)7#6}?/+?+(7^,;{*?%;{,?+?%^{},?+{#,/%?^&]{#,?,]{?^+3(?^&%3/?(+,3/?^%+?+^#/%3^?}%+#/%?^}?&?%}&#/,?%^+#?}/^+7(}7#+/6?)/}#+76)#/?}7+#/}??7+%/}#??{7#}+%?{,+}#^8^kết quả là *,%^*^#,#61?*%*^^?,#^?%$ chúc bạn học giỏi nhe :)))
Bằng 5^57/7,71 cách giải 12:0,1+7/^1-729=5^57/7,71
5^57/7,71-3:3x2+2:4=5^57/7,71
Chúc bạn học giỏi nhe :)))) 👍👍👍👍👍👍👍👍👍

202^303 = 202^3x101= (202^3)^101=8242408^101
303^202 = 303^2x101= (303^2)^101=91809^101
vì 8242408^101> 91809^101
=> 202^303 > 303^202
vậy .. .
ủng hộ nhé

Ta có :
202203 = 8 242 408101 ( 1 )
203202 = 42 209101 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 202203 < 203202

\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà \(201<201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
=> \(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(20>8\)
\(\Leftrightarrow20^2>8^2\)
202>82
Hok_Tốt
Tk nha
#Thiên_Hy