tìm GTLN của P =ab2+bc2+ca2
biết a,b,c>0 và a4+b4+c4=48
giúp giùm ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,b,c>0;abc=1000\)
\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)
P đạt GTLN là 1/1000 khi \(a=b=c=10\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)
\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)
\(=10^2-2.25=50\)
Ta có: a+b+c=0 ⇒(a+b+c)2=0
Hay a2+b2+c2+2ab+2bc+2ca=0
1+2(ac+bc+ca)=0
ab+bc+ca=\(\dfrac{-1}{2}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)
\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)
hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)
Từ (1) và (2) ⇒a4+b4+c4=50
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
theo bài ta có:
a + b + c = 0
=> a = -(b + c)
=> a2 = [-(b + c)]2
=> a2 = b2 + 2bc + c2
=> a2 - b2 - c2 = 2bc
=> ( a2 - b2 - c2)2 = (2bc)2
=> a4 + b4 + c4 - 2a2c2 + 2b2c2 - 2a2c2 = 4b2c2
=> a4 + b4 + c4 = 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2c2 + 2b2c2 + 2a2c2
=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
=> 2(a4 + b4 + c4) = 1
=> a4 + b4 + c4 = \(\dfrac{1}{2}\)
Ta có:
\(a^4+b^4+b^4+16\ge4\sqrt[4]{a^4.b^8.16}=8ab^2\)
\(\Rightarrow ab^2\le\frac{a^4+2b^4+16}{8}\)
Tương tụ thì ta có:
\(\hept{\begin{cases}bc^2\le\frac{b^4+2c^4+16}{8}\\ca^2\le\frac{c^4+2a^4+16}{8}\end{cases}}\)
Từ đó suy ra
\(P\le\frac{a^4+2b^4+16}{8}+\frac{b^4+2c^4+16}{8}+\frac{c^4+2a^4+16}{8}\)
\(=\frac{3\left(a^4+b^4+c^4\right)+3.16}{8}=\frac{3.48+3.16}{8}=24\)
mơn nha