cho A = 2+22+23+...+260. chứng minh A\(⋮\)3,7,15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có A = 2 + 2 2 + 2 3 + . . . + 2 60
= 2 + 2 2 + 2 3 + 2 4 + . . . + 2 59 + 2 60
= 2.(1+2)+ 2 3 .(1+2)+...+ 2 59 .(1+2)
= 2.3+ 2 3 .3+...+ 2 59 .3
= 3.(2+ 2 3 +...+ 2 59 ) ⋮ 3
=> A ⋮ 3
Ta có A = 2 + 2 2 + 2 3 + . . . + 2 60
= 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + ... + 2 58 + 2 59 + 2 60
= 2.(1+2+4) + 2 4 .(1+2+4) + ... + 2 58 .(1+2+4)
= 2.7 + 2 4 .7 + ... + 2 58 .7
= 7.(2 + 2 4 + ... + 2 58 ) ⋮ 7
=> A ⋮ 7
Có A ⋮ 2; A ⋮ 3; A ⋮ 7 và 2;3;7 đôi một nguyên tố cùng nhau nên A ⋮ 42
![](https://rs.olm.vn/images/avt/0.png?1311)
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: A = 2 + 2 2 + 2 3 + … + 2 60 = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7 |
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)
\(A=6+2^2.6+...+2^{58}.6\)
\(A=6.\left(1+2^2+...+2^{58}\right)\)
Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)
Vậy \(A⋮3\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{56}.30\)
\(A=30.\left(1+...+2^{56}\right)\)
Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)
Vậy \(A⋮5\)
_________________
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)
\(A=14+...+2^{57}.14\)
\(A=14.\left(1+...+2^{57}\right)\)
Vì \(14⋮7\) nên \(14.\left(1+...+2^{57}\right)⋮7\)
Vậy \(A⋮7\)
\(#WendyDang\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(2A=2^2+2^3+...+2^{61}\)
=>A=2^61-2
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)
Từ (1), (2) suy ra A chia hết cho 21
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề : 2 + 22 + 23 + ... + 260
2 + 22 + 23 + ... + 260 = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )
=20. 30 + 24 . 30 + ... + 256 . 30
= ( 20 + 24 + ... + 256) . 2 . 15 \(⋮\)15
![](https://rs.olm.vn/images/avt/0.png?1311)
b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B\text{=}2.63+...+2^{56}.63\)
\(\Rightarrow B⋮63\)
\(\Rightarrow B⋮21\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai, viết lại thành:
A= 21+22+23+24+...+259+260
Giải:
A=21+22+23+...............+259+260
A=(21+22+23)+...............+(258+259+260)
A=2.(1+2+22)+............+258.(1+2+22)
A=2.7+.......................+258.7
A=(2+24+..............+258).7 ⋮ 7(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$.
A = 2+22+23+...+260
A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)
A = 2.7+24.7+...+258.7
A= 7. (2+24+...+258) chia hết cho 7
--> A chia hết cho 7 (ĐPCM)
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
\(\Rightarrow A⋮3\)
\(A=2+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+...+2^{58}.7\)
\(A=7.\left(2+...+2^{58}\right)\)
\(\Rightarrow A⋮7\)
\(A=2+2^2+...+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)
\(A=2.15+...+2^{57}.15\)
\(A=15.\left(2+...+2^{57}\right)\)
\(\Rightarrow A⋮15\)