K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

đề sai hay đúng vậy bạn

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn
17 tháng 1 2019

\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+........+\left(x+2019\right)=2019\)

\(\Rightarrow\left(x+x+x+x+.........+x+x+\right)+\left(1+2+3+4+........+2018+2019\right)=2019\)

\(\Rightarrow2020x+2039190=2019\)(Tự làm tiếp )

14 tháng 2 2020

no i don't think i'll

1 tháng 10 2021

\(\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{1}{2019}x2018\)
\(=\dfrac{2020}{2019}-\dfrac{2019}{2018}+\dfrac{2018}{2019}=2-\dfrac{2019}{2018}=\dfrac{2017}{2018}\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

17 tháng 10 2021

cái . ở giữa 2019 . \(\sqrt{x^4}\) là x hay bài khác vậy ?

8 tháng 2 2021

a) (x-3) + (x-2) + ( x-1) + ..... + 10 + 11 = 11

(x-3) + (x-2) + ( x-1) + ..... + 10 = 0

Gọi số các số hạng từ x-3 đến 10 là n

Ta có : [10 + (x-3)].n : 2 = 0

(x+7).n = 0

Vì n ≠ 0 ( n là số các số hạng )

Nên x+7 = 0

x = 0-7

x = -7

Vậy x = -7

8 tháng 2 2021

b)

 x + ( x + 1 ) + ( x + 2 ) + ... + 2018 + 2019 = 2019 

⇒ x + ( x +1 ) + ...  + 2018 = 0 

⇒ x + ( x + 1 ) + ... + ( x + 2018 ) = 1 + 2 + ... + 2018 

⇒ x = 0 

vậy x = 0 

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)