Cho a>0. CMR \(\sqrt{a}+2>\sqrt{a+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bạn xem lại đề bài nhé :)
Nhận xét : Với \(x\ge0\), ta có \(x=\sqrt{x^2}\)
Đặt \(x=\sqrt{A-\sqrt{B}}+\sqrt{A+\sqrt{B}}\), ta có \(x\ge0\), từ nhận xét suy ra \(x=\sqrt{x^2}\)
Ta có : \(x^2=2A+2\sqrt{A^2-B}=4\left(\frac{A+\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow x=2\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\)(1). Tương tự, đặt \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\).
Xét : \(A+\sqrt{B}-\left(A-\sqrt{B}\right)=2\sqrt{B}>0\Leftrightarrow A+\sqrt{B}>A-\sqrt{B}\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}>\sqrt{A-\sqrt{B}}\Rightarrow y>0\). Áp dụng nhận xét, ta cũng có \(y=\sqrt{y^2}\)
Ta có : \(y=\sqrt{A+\sqrt{B}}-\sqrt{A-\sqrt{B}}\Leftrightarrow y=2A-2\sqrt{A^2-B}=4\left(\frac{A-\sqrt{A^2-B}}{2}\right)\)
\(\Rightarrow y=2\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\) (2)
Cộng (1) và (2) theo vế : \(x+y=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(2\sqrt{A+\sqrt{B}}=2\left(\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\right)\)
\(\Leftrightarrow\sqrt{A+\sqrt{B}}=\sqrt{\frac{A^2+\sqrt{B}}{2}}+\sqrt{\frac{A^2-\sqrt{B}}{2}}\)(đpcm)

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>a\)
\(\Leftrightarrow2ab-2b^2+2\sqrt{a^2-b^2}.\sqrt{2ab-b^2}>0\)
Cái nãy đúng vì \(0< b< a\)
Vậy có ĐPCM

Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2≤t=√5c+4≤32≤t=5c+4≤3
Ta có:a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16
⇔(5a+4)(5b+4)≥4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)
⇔(√5a+4+√5b+4)2

Lời giải:
Vì \(a+b+c=4; b,c>0\Rightarrow a=4-b-c< 4\)
\(\Rightarrow a^4< 4a^3\)
\(\Rightarrow \frac{a^4}{4}< a^3\Rightarrow \frac{a}{\sqrt[4]{4}}< \sqrt[4]{a^3}\). Hoàn toàn tương tự:
\(\frac{b}{\sqrt[4]{4}}< \sqrt[4]{b^3}; \frac{c}{\sqrt[4]{4}}< \sqrt[4]{c^3}\)
Cộng theo vế:
\(\Rightarrow \sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}> \frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Ta có đpcm.

Ta có : \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^2>\left(\sqrt{a+b}\right)^2\)
\(\Leftrightarrow a+2\sqrt{ab}+b>a+b\)
\(\Leftrightarrow2\sqrt{ab}>0\) (BDT đúng vì a,b > 0 nên \(2\sqrt{ab}>0\) )
Vậy \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
(\(\sqrt{a}\) + \(\sqrt{b}\))2 = a +b + 2\(\sqrt{ab}\)
Vì a >0 ; b>0 => ab >0 => \(\sqrt{ab}\)>0 => 2\(\sqrt{ab}\)>0 => (\(\sqrt{a}\)+\(\sqrt{b}\))2 > a+b => \(\sqrt{a}\) + \(\sqrt{b}\) > \(\sqrt{a+b}\)

Áp dụng BĐT AM-GM ta có:
\(\frac{a}{\sqrt{b}}+\sqrt{b}\ge2.\sqrt{\frac{a}{\sqrt{b}}.\sqrt{b}}=2\sqrt{a}\)
Tương tự:\(\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{\frac{b}{\sqrt{a}}.\sqrt{a}}=2\sqrt{b}\)
Cộng theo vế BĐT ta được:\(\frac{a}{\sqrt{b}}+\sqrt{b}+\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Rightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Ta có : \(\sqrt{a}+2>\sqrt{a+4}\)
\(\Leftrightarrow a+4\sqrt{a}+4>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\) ( Đúng )
Kiến thức này có từ đầu năm rồi nhé bạn.
Với \(a\ge0,b\ge0\) , ta có:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\\ \sqrt{a}-\sqrt{b}\le\sqrt{a+b}\)