Cho \(a^2+b^2\le2\). Chứng minh \(a+b\le2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan
Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow2ab\le a^2+b^2\)
\(\Rightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^2\le4\Rightarrow a+b\le2\)
\(a^2\ge a\)
\(b^2\ge b\)
\(a^2+b^2\le2\Rightarrow a+b\le2\)