Chứng minh rằng: 2 + 1 = OK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


OH là một phần đường kính vuông góc với dây AB
⇒ H là trung điểm của AB ⇒ AB = 2HB
OK là một phần đường kính vuông góc với dây CD
⇒ K là trung điểm của CD ⇒ CD = 2KD
Theo mục 1: OH2 + HB2= OK2+ KD2
a) Ta có: AB = CD ⇒ HB = KD
⇒ OH2 = OK2 ⇒ OH = OK
b) Ta có: OH = OK ⇒ HB2 = KD2
⇒ HB = KD ⇒ AB = CD

OH là một phần đường kính vuông góc với dây AB
⇒ H là trung điểm của AB ⇒ AB = 2HB
OK là một phần đường kính vuông góc với dây CD
⇒ K là trung điểm của CD ⇒ CD = 2KD
Theo mục 1: OH2 + HB2= OK2+ KD2
Ta có: AB = CD ⇒ HB = KD
⇒ OH2 = OK2 ⇒ OH = OK

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2012^2}+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}+\dfrac{1}{2012.2013}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2012}-\dfrac{1}{2013}\)
\(=1-\dfrac{1}{2013}\)
\(\Rightarrow A< 1-\dfrac{1}{2013}\)
\(\Rightarrow A< 1\) ( đpcm )
mình gợi ý nè :
Chứng minh A <\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

1) Giải
Vì n thuộc N và n > 1
Ta có : n3 - 61n = n3 - n - 60n = ( n3 - n ) - 60n
Ta có : n3 - n = n2.n - 1.n = n(n2 - 1) = n(n-1)n(n+1)
=> n3 - n = ( n + 1 )n( n - 1 ) : hết cho 6 với mọi n thuộc N và n > 1 thì ( n - 1 )n(n + 1 ) là tích của ba số tự nhiên liên tiếp
Ta có ; 60n : hết cho 6 với mọi n thuộc N và n > 1
Do đó ( n3 - n ) - 60n : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N và n > 1 thì n3 - 61n : hết cho 6
2) Giải
Ta có : n( n + 2 ) ( 25n2 - 1 )
=> n( n + 2 ) ( n2 + 24n2 - 1 )
=> n( n + 2 ) [ ( n2 - 1 ) + 24n2 ]
=> n( n + 2 ) ( n2 - 1 ) + n( n + 2 ) . 24n2
=> ( n -1 )n( n + 1 ) ( n + 2 ) + n( n + 2 ) . 24n2 (1)
Ta có : n( n + 2 ) . 24n2 : hết cho 24 mọi n
vì n thuộc N , n > 1 nên ( n - 1 )n( n + 1 ) ( n + 2 ) là tích của bốn số tự nhiên liên tiếp
=> ( n - 1 )n( n + 1 ) ( n + 2 ) : hết cho 8 và chi hết cho 3
ta có 8.3 = 24 và U7CLN( 8 ; 3 ) = 1 (2)
Do đó ( n - 1 ) n ( n + 1 ) ( n + 2 ) : hết cho 24 (3)
Từ (1) ; (2) và (3) => n( n + 2 ) ( 25n2 - 1 : hết cho 24 với mọi n thuộc N và n > 1
Vậy với mọi n thuộc N và n > 1 thì n ( n + 2 ) ( 25n2 - 1 ) : hết cho 24

\(B=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)
\(B=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)
\(B=\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+....+\frac{100-81}{81.100}\)
\(B=\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}+...+\frac{100}{81.100}-\frac{81}{81.100}\)
\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
\(B=1-\frac{1}{100}< 1\)
=> B < 1 (Đpcm)
B = 3/12.22 + 5/22.32 + 7/32.42 + ... + 19/92.102
B = 3/1.4 + 5.4.9 + 7/9.16 + ... + 19/81.100
B = 1 - 1/4 + 1/4 - 1/9 + 1/9 - 1/16 + ... + 1/81 - 1/100
B = 1 - 1/100 < 1 ( đpcm)

a)
Cách 1:
Ta có: \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).
\( \Leftrightarrow \overrightarrow {KA} = - 2\overrightarrow {KB} \)
Suy ra vecto \(\overrightarrow {KA} \) và vecto\(\;\overrightarrow {KB} \) cùng phương, ngược chiều và \(KA = 2.KB\)
\( \Rightarrow K,A,B\)thẳng hàng, K nằm giữa A và B thỏa mãn: \(KA = 2.KB\)
Cách 2:
Ta có: \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \).
\(\begin{array}{l} \Leftrightarrow \left( {\overrightarrow {KB} + \overrightarrow {BA} } \right) + 2\overrightarrow {KB} = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB} + \overrightarrow {BA} = \overrightarrow 0 \\ \Leftrightarrow 3.\overrightarrow {KB} = \overrightarrow {AB} \\ \Leftrightarrow \overrightarrow {KB} = \frac{1}{3}\overrightarrow {AB} \end{array}\)
Vậy K thuộc đoạn AB sao cho \(KB = \frac{1}{3}AB\).
b)
Với O bất kì, ta có:
\(\frac{1}{3}\overrightarrow {OA} + \frac{2}{3}\overrightarrow {OB} = \frac{1}{3}\left( {\overrightarrow {OK} + \overrightarrow {KA} } \right) + \frac{2}{3}\left( {\overrightarrow {OK} + \overrightarrow {KB} } \right) = \left( {\frac{1}{3}\overrightarrow {OK} + \frac{2}{3}\overrightarrow {OK} } \right) + \left( {\frac{1}{3}\overrightarrow {KA} + \frac{2}{3}\overrightarrow {KB} } \right) = \overrightarrow {OK} + \frac{1}{3}\left( {\overrightarrow {KA} + 2\overrightarrow {KB} } \right) = \overrightarrow {OK}\)
Vì \(\overrightarrow {KA} + 2\overrightarrow {KB} = \overrightarrow 0 \)
Vậy với mọi điểm O, ta có \(\overrightarrow {OK} = \frac{1}{3}\overrightarrow {OA} + \frac{2}{3}\overrightarrow {OB} .\)
?????????????????????????????????
2+1=3
3=1=2
luongkun!