Phân tích đa thức thành nhân tử
a) \(x^2+7x+12\)
b) \(x^2+6x+8\)
bài dễ giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)
a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
c: \(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)\)
\(=\left(x-8\right)\left(x+1\right)\)
\(a,xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
\(---\)
\(b,\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
\(---\)
\(c,x^2-7x-8\)
\(=x^2+x-8x-8\)
\(=\left(x^2+x\right)-\left(8x+8\right)\)
\(=x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x-8\right)\)
\(Toru\)
\(a,=7xy\left(x^2-2xy+y^2\right)=7xy\left(x-y\right)^2\\ b,=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\)
a) \(36a^4-y^2=\left(6a^2-y\right)\left(6a^2+y\right)\)
b) \(6x^2+x-2=2x\left(3x+2\right)-1\left(3x+2\right)=\left(3x+2\right)\left(2x-1\right)\)
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`
\(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
\(x^2+6x+8\)
\(=x^2+2x+4x+8\)
\(=x\left(x+2\right)+4\left(x+2\right)=\left(x+2\right)\left(x+4\right)\)
a) x2 + 7x + 12
= x2 + 3x + 4x + 12
= x.(x+3) + 4.(x+3)
= (x+3).(x+4)
b) x2 + 6x + 8
= x2 + 2x + 4x + 8
= x.(x+2) + 4.(x+2)
= (x+2).(x+4)